Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://212.1.86.13:8080/xmlui/handle/123456789/5908
Назва: | Features of Mathematical Simulation of the Processes of Combined Heat Transfer in Waveguides |
Автори: | Zhulkovskyi, Oleg Petrenko, Ivan Savchenko, Iurii Zhulkovska, Inna Davitaia, Olena Titov, Andrii |
Ключові слова: | model heredity temperature deformation composite materials heredity nucleus parameters |
Дата публікації: | 13-жов-2023 |
Видавництво: | Kremenchuk Mykhailo Ostrohradskyi National University |
Бібліографічний опис: | Zhulkovskyi Oleg, Petrenko Ivan, Savchenko Iurii, Zhulkovska Inna, Davitaia Olena, Titov Andrii. Features of Mathematical Simulation of the Processes of Combined Heat Transfer in Waveguides. Proceedings of the 4th international conference on Modern Electrical and Energy System, 20 – 22 October, 2022. P. 452-456. |
Серія/номер: | Proceedings of the 4th international conference on Modern Electrical and Energy System;20 – 22 October, 2022 |
Короткий огляд (реферат): | Mechanical means which are directly related to the information support path (locators, observation stations, accompaniment, detection, localization, etc.) require special attention within the framework of the technical channels of receiving information. Their accurate and stable performance is of the utmost importance. Loss of the mechanical properties occurs during operation, that is material wear. A special role in the development and study of technological systems, characterized by high temperature process conditions (in metallurgy, power engineering, mechanical engineering, etc.) is featured to the develop-ment of rational mathematical models of heat transfer processes. In practice there is a joint (compound) or a complex heat transfer, which combines heat conduction, convection and radiation heat transfer processes. Mathematical modeling method of compound (radiationconvective) heat transfer processes in techno-logical systems, based on the numerical solution of multidimensional differential heat conduction equation with complicated boundary conditions has been introduced. And at the same time finite-difference approximation of heat conduction equation and boundary conditions is obtained by integrointerpolation method (balance meth-od). A locally onedimensional method of calculation based on heat exchange process splitting in the spatial variables is applied to solve the multidimensional problems of heat exchange. Heat transfer calculations of complex heat exchange are recommended to carry out on the base of the additive principle considering the common difficulty of numerical implementation of heat transfer problems, but when recording finite-difference approximation of boundary conditions it is advantageous to use the radiation heat exchange coefficient. The approaches considered to mathematical modeling of compound heat transfer processes can be used to investigate the thermal conditions of the process equipment in metallurgy, power engineering, mechanical engineering and other industries, as well as in the students training of university specialties. Thus, the solution of the fundamental problem of radiative heat transfer in the formulation adopted here (i.e., when a discrete consideration of temperature fields and optical constants is practically possible), ultimately comes down to calculating the angular coefficients (geometric radiation invariants) considered system of surfaces |
URI (Уніфікований ідентифікатор ресурсу): | http://biblio.umsf.dp.ua/jspui/handle/123456789/5908 |
ISBN: | 978-1-6654-2366-3 |
Розташовується у зібраннях: | Кафедра кібербезпеки та інформаційних технологій |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Scopus_13_MEES 2022_452_456.pdf | 591,15 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.