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Abstract — Mechanical means which are directly related to 

the information support path (locators, observation stations, 

accompaniment, detection, localization, etc.) require special 

attention within the framework of the technical channels of 

receiving information. Their accurate and stable performance 

is of the utmost importance. Loss of the mechanical properties 

occurs during operation, that is material wear. A special role in 

the development and study of technological systems, 

characterized by high temperature process conditions (in 

metallurgy, power engineering, mechanical engineering, etc.) is 

featured to the develop-ment of rational mathematical models 

of heat transfer processes. In practice there is a joint 

(compound) or a complex heat transfer, which combines heat 

conduction, convection and radiation heat transfer processes. 

Mathematical modeling method of compound (radiation-

convective) heat transfer processes in techno-logical systems, 

based on the numerical solution of multidimensional 

differential heat conduction equation with complicated 

boundary conditions has been introduced. And at the same 

time finite-difference approximation of heat conduction 

equation and boundary conditions is obtained by integro-

interpolation method (balance meth-od). A locally one-

dimensional method of calculation based on heat exchange 

process splitting in the spatial variables is applied to solve the 

multidimensional problems of heat exchange. Heat transfer 

calculations of complex heat exchange are recommended to 

carry out on the base of the additive principle considering the 

common difficulty of numerical implementation of heat 

transfer problems, but when recording finite-difference 

approximation of boundary conditions it is advantageous to 

use the radiation heat exchange coefficient. The approaches 

considered to mathematical modeling of compound heat 

transfer processes can be used to investigate the thermal 

conditions of the process equipment in metallurgy, power 

engineering, mechanical engineering and other industries, as 

well as in the students training of university specialties. Thus, 

the solution of the fundamental problem of radiative heat 

transfer in the formulation adopted here (i.e., when a discrete 

consideration of temperature fields and optical constants is 

practically possible), ultimately comes down to calculating the 

angular coefficients (geometric radiation invariants) 

considered system of surfaces 

Keywords— model, heredity, temperature, deformation, 

composite materials, heredity nucleus, parameters. 

I. INTRODUCTION 

The labor intensity, material intensity and high cost of 
laboratory, semi-industrial and industrial experiments, their 
limitations, multidimensionality and nonlinearity of the main 
processes and developments, as well as the progressive 
development of computer technology and software scale, 
have significantly updated theoretical research (mathematical 
modeling).  

Mechanical means which are directly related to the 
information support path (locators, observation stations, 
accompaniment, detection, localization, etc.) require special 
attention within the framework of the technical channels of 
receiving information. Their accurate and stable performance 
is of the utmost importance. Loss of the mechanical 
properties occurs during operation, that is material wear. 

A special role in the development and study of the path 
of information support, characterized by high-temperature 
conditions of the processes (in metallurgy, energy, 
mechanical engineering, etc.), is assigned to the creation of 
rational mathematical models of heat transfer processes. 

II. RECENT RESEARCH ANALYSIS 

As is known [1], the basis of mathematical models of the 

mentioned processes is the differential equation of heat 

conduction, which connects temporal and spatial 

temperature changes of the designed or investigated process, 

unit, structure, etc: 

,                (1) 

where c - heat capacity; ρ - density; T - temperature; 

 τ - time; λ - thermal conductivity; - power of internal heat 

sources. 

Equation (1) can be used to solve specific problems of 

heat conduction if it is supplemented by appropriate 

boundary conditions (singularity conditions), among which 
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are boundary conditions characterizing the process of heat 

exchange between the body surface and the environment.  

In practice, usually there is a joint (combined) or 

complex heat transfer that combines the processes of heat 

conduction, convection and radiation (radiant) heat transfer. 

Among the processes of complex heat transfer, radiation-

convectional heat transfer is the most general case, in which 

the heat is transferred not only by radiation, but also by 

conduction and convection [1-3]. 

Therefore, in most practical problems, boundary 

conditions of type III with known patterns of heat exchange 

between the body surface and the medium prevail. 

In view of the extreme complexity of the obtained 

solutions, the estimated calculations of complex heat 

exchange can be carried out on the basis of the additivity 

principle - separately and independently calculate the 

radiative and convective components of heat flows, and sum 

up the results [1]. 

III. GOALS AND OBJECTIVES OF THE ARTICLE 

Lets consider features of numerical solution of the 

following problem of combined (radiation and convection) 

heat transfer in the absence of internal heat sources: 

;                (2) 

;   

(3) 

,                         (4) 

where x is the corresponding coordinate; α is the heat 

transfer coefficient; σ0 is the Stefan-Boltzmann constant; a 

is the surface absorptivity; Φ is the resolving angular 

radiative coefficient; T0 is the initial temperature of the 

incoming flow away from the surface (or ambient 

temperature); Tr is the temperature of the surfaces involved 

in the radiative heat transfer [2-5].  

The index S (from surface) in (3) denotes the surface of 

the calculation region, and the indices k and r are the 

convective and radiative components of the complex heat 

exchange, respectively [6]. 

In this formulation of the problem, there are identical 

complex heat transfer conditions on both boundary surfaces 

(3). 

IV. MAIN PART 

In the boundary conditions (3) along with the traditional 

Newton-Richman law describing the convective component 

of the combined heat transfer, there is an expression [4] to 

account for the flux density of the resulting radiation in a 

closed system of n radiating gray bodies separated by a 

transparent (diathermal) medium. In this case the problem of 

radiation heat transfer is eventually reduced to finding 

geometrical invariants of radiation, namely its angular 

coefficients [7-9]. 

The study of heat transfer by radiation in closed systems 

formed by an opaque surface of arbitrary configuration is of 

interest for many engineering applications. If the 

temperature distribution is given on the entire boundary 

surface, and it is required to find the resulting radiation 

fluxes (qr), the problem statement is usually called 

fundamental. 

In engineering practice of solving the integral equations 

of radiative heat transfer for a system of bodies separated by 

a transparent (diathermic) medium, due to the complexity of 

the initial problem, a number of simplifications have to be 

introduced. The most commonly accepted assumption is the 

diffuseness of radiation and reflection and gray or 

monochromatic radiation, which is characterized by a 

constant density in isothermal areas of the system surface. In 

this approximation, calculations require minimal initial 

information - radiation and optical-geometric characteristics 

of the system of bodies under consideration. 

The solution of the integral equations of radiative heat 

transfer can be carried out by analytical and numerical 

methods. Exact analytical solutions are possible only for 

simple geometric configurations of radiating systems. 

Therefore, in view of the great computational difficulties in 

implementing the problems of radiant heat transfer, in 

engineering calculations, approximate analytical and 

numerical methods are resorted to. Numerical methods for 

reducing linear integral equations to a finite system of linear 

algebraic equations or the so-called zonal methods find the 

greatest distribution for solving practical problems of 

radiative heat transfer. 

The essence of zonal methods is [10, 15] that the surface 

F of the radiating system is divided into an arbitrary number 

of zones n, under the condition . Within each 

zone, the temperature and radiation characteristics of the 

surface are constant. Consequently, the continuous 

temperature distribution and the optical characteristics of the 

radiating system are replaced by discontinuous (discrete), in 

which the field of the indicated characteristics is considered 

to consist of a finite number of thermally and optically 

homogeneous sections (bodies, zones). In this case, the 

original integral equation of radiative heat transfer is 

replaced by a system of integral equations (one for each 

zone). By the way, this approach is very convenient for the 

grid solution of the heat equation. 

If a continuous temperature distribution is specified on 

the surface, the degree of accuracy of approximation of the 

original integral equation by the system of equations 

depends on the number of zones into which the surface is 

divided. As n→∞, the system of integral equations 

degenerates into one exact integral equation. 

If we add here another assumption accepted in zonal 

methods, namely, the equality of the local slope to the 

average, the system of integral equations turns into a system 

of algebraic equations of radiative heat transfer, which 

underlies the zonal methods. The greater the number of 

allocated zones, the more reliable the solution obtained. 

Thus, the solution of the fundamental problem of 

radiative heat transfer in the formulation adopted here (i.e., 

when discrete consideration of the temperature fields and 

optical constants is practically possible), ultimately reduces 
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to calculating the slope coefficients (geometric radiation 

invariants) of the considered system of surfaces. 

Calculation of angular radiation coefficients for complex 

geometric systems may represent a rather complicated 

mathematical problem. The values of angular coefficients 

are determined by the shape, sizes of radiating surfaces, as 

well as the mutual location in space of the bodies that are in 

a state of radiative heat exchange. Besides, it is not always 

possible to reduce the system under consideration to the 

system of classical geometry, which introduces additional 

difficulties into the calculation technique. All this ultimately 

complicates the algorithm for solving the problem of 

radiation heat exchange [10-12]. 

For n < 3 the radiation heat transfer problems are 

considerably simplified, being reduced to common classical 

problems [13]. 

Differential schemes for differential equation (1) should 

correctly reflect in the grid function space the main 

properties of the original problem, such as self-coupling, 

familiar definiteness, etc. For complex problems described 

by nonlinear equations or equations with variable 

coefficients, a simple replacement of derivatives by finite 

differences cannot be considered acceptable because it will 

lead to schemes with a large error unsuitable for calculation. 

In this connection, an important task is to obtain so-called 

conservative difference schemes whose numerical solutions 

satisfy the energy conservation law [14-18]. 

Based on the above, difference schemes for the nonlinear 

differential heat conduction equation (1) are usually 

obtained [5, 15-18] not by the traditional method (from 

approximation of the differential equation operators), but by 

the integro-interpolation or balance method (from direct 

approximation of heat balance relations written for 

elementary volumes). In this process, expressions are used 

for heat fluxes at the boundaries to ensure that the 

conditions of agreement are fulfilled [19-23]. In this case, 

for heat fluxes at the boundaries, expressions are used that 

ensure the fulfillment of the matching conditions. 

The main stages of applying the heat balance method are 

as follows: 

- the area in which the solution is sought is divided into 

elementary volumes (cells) built around each grid node; 

- for all internal and boundary cells, heat balance 

equations are written, including the values of heat fluxes at 

the cell boundaries; when writing balance equations for cells 

adjacent to boundaries, boundary conditions are used; 

- the terms included in the heat balance equations are 

approximated, i.e. these terms are expressed in terms of grid 

function values; in this case, the approximation expressions 

for heat fluxes must satisfy the matching condition. 

Since the number of cells is equal to the number of 

nodes of the spatial partition, then as a result of the above 

actions, a complete system of algebraic equations is 

obtained - a difference scheme, by solving which it is 

possible to determine the difference solution. 

In addition, in the numerical simulation of continuous 

processes of combined heat exchange, the use of 

unconditionally stable implicit calculation schemes instead 

of conditionally stable and inefficient explicit schemes is 

more often resorted to [22]. 

Therefore, for equation (2) and boundary conditions (3) 

let us write an implicit difference scheme constructed by the 

integro-interpolation method: 

- for the boundary points: 

 

 

;  

 (5) 

 

 

; 

  (6) 

– for internal points ( ): 

 

,                       (7) 

where the effective thermal conductivities of the segments 

can be calculated, for example, by the formula [5]: 

. 

The considered one-dimensional problem (2)-(4) can be 

simply extended to the multidimensional cases using the so-

called local-indimensional scheme of splitting by spatial 

variables, which combines the advantages of explicit (small 

machine time consumption at a time step) and implicit 

schemes (unconditional stability) [18]. 

In local-one-dimensional schemes, the course of a 

multidimensional physical process at each time step is 

represented as a result of successive realization of 

corresponding one-dimensional processes, each of which 

starts from a field distribution that arose after the end of the 

previous one-dimensional process. On the basis of such 

splitting of the problem into spatial variables, modeling of 

one-dimensional processes is carried out using implicit 

schemes and sequential action of processes is considered 

essentially explicitly, i.e. solution of a multidimensional 

problem is reduced to calculation at each time step of a set 

of one-dimensional problems. Application of implicit 

approximation of one-dimensional problems provides 

unconditional stability of the scheme [12]. 

The method of compiling a system of finite-difference 

equations of a locally one-dimensional scheme can be given 

the following physical interpretation. At the first stage, the 

region is replaced by a set of horizontal rods that are 

thermally insulated from each other, for each of which the 

corresponding implicit finite-difference scheme is written 
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using the balance method, which takes into account the 

boundary conditions of the problem on the vertical 

boundaries as the boundary conditions for the ends of the 

rod.  

In this case, for the lower and upper horizontal rods, 

their lateral heat exchange with the medium is not taken into 

account. Therefore, the system of equations for the first and 

last horizontal rows of elementary volumes is completely 

identical to the system of equations for the inner row, which 

simplifies the calculation. At the next stage, in a similar 

way, finite-difference equations are compiled for vertical 

rods, and so on (in the case of a spatial problem). 

The local one-dimensional scheme is naturally 

transferred to the cylindrical coordinate system with 

splitting in radial, angular and axial coordinates (or in two 

of the indicated directions in the case of a two-dimensional 

problem). 

The local one-dimensional scheme can also be used for 

stepped regions, the boundaries of which are formed in the 

two-dimensional case by straight lines parallel to the 

coordinate axes, and in the three-dimensional case by planes 

parallel to the coordinate planes. 

When considering the approximation property, a special 

concept of the so-called total approximation is introduced, 

which consists in the following. Each of the intermediate 

systems of difference equations separately does not have the 

property of approximation. However, the discrepancy that 

occurs at the first step of splitting is compensated for at 

subsequent stages, so that, in general, an approximation 

error is obtained that tends to zero when the space-time grid 

is refined. 

When developing a locally one-dimensional scheme for 

splitting a multidimensional heat equation, the time step 

value must be chosen in such a way that the difference 

between the final and intermediate temperature fields does 

not exceed the temperature changes per time step, or at least 

has the same order of magnitude. 

The method of total approximation makes it possible to 

split complex problems into a sequence of simpler ones and 

significantly simplify the solution of a wide class of 

multidimensional problems of mathematical physics. Using 

splitting in spatial variables, almost any numerical algorithm 

can be naturally generalized to the multidimensional case. 

The original problem is thus reduced to finding "good" one-

dimensional schemes. 

So, when solving multidimensional problems of 

combined heat exchange the sequential solution of one-

dimensional problems of type (2) - (4) is carried out taking 

into account the number of splitting of heat exchange 

process by directions of heat flow distribution, i.e. adopted 

coordinate system [11].  

The system of heat balance equations for any of splitting 

directions by spatial variables can be written in the 

following canonical form: 

, ( ),         (8) 

where . 

The boundary value problem (4) is a system of linear 

algebraic equations with a tridiagonal matrix, which allows 

us to organize calculations by the modified Gauss method, 

i.e., by the method of runs [40]. 

Classical algorithm of numerical realization of this 

method requires initial calculation of coefficient values Ai, 

Bi, Ci, Fi of equations system (8) for their subsequent 

substitution in appropriate equations. 

So to solve the problem (2)-(4) by method of runs it is 

enough to reduce the system of heat balance equations (5)-

(7) to canonical form (8).  

However, when directly writing the expression for 

calculating the flux density of radiation heat exchange into 

the finite-difference equations (5) and (6), the problem of 

their further reduction to the form (4) appears, where all 

temperatures near the coefficients Ai, Bi, Ci should be 

written in the first degree [11-13]. 

In avoiding this problem, when writing the finite-

difference approximation of boundary conditions for the 

heat conduction equation describing the combined 

(radiation-convective) heat transfer, it is advisable to use the 

radiation heat transfer coefficient [12]: 

,                                  (9) 

where qr is the heat flux density due to radiation heat 

transfer; ∆Tp is the design temperature head  

( ), 

So the boundary conditions (5) and (6) with regard to (5) 

take the following form, respectively: 

 

;                     (10) 

 

.      (11) 

Now from equations (10), (11) and (5) it is easy to 

derive calculation formulas for equation (4) coefficients and 

then find solution of problem (3) - (5) by running. 

Most of practical heat exchange problems are nonlinear, 

because thermophysical quantities of equation (1), as well as 

coefficients of heat transfer and radiation heat exchange in 

its boundary conditions are functions of required 

temperature. 

Thermal-physical quantities are usually obtained as a 

result of approximation by temperature functions by 

corresponding table values. 

There are two approaches to solving nonlinear problems. 

The easiest to implement and economically justified are the 

so-called quasi-linear difference schemes, in which the 

desired coefficients of the thermal conductivity equation and 
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its boundary conditions are calculated depending on the 

temperature value from the previous time layer. Purely 

nonlinear schemes, where the coefficients of the heat 

transfer equation are taken at the temperature values at the 

new time layer, require iterative methods to construct a 

convergent iterative process, at each step of which a system 

of linear equations is solved. In such a formulation, the 

volume of calculations significantly increases in comparison 

with the quasi-linear scheme, and the numerical simulation 

of long technological processes becomes very difficult. 

The considered approaches to mathematical modeling of 

the processes of combined heat exchange are widely used by 

the authors of the work in the study of thermal regimes of 

technological equipment 

CONCLUSION 

The paper presents a method of mathematical modeling 
of the processes of combined (radiation and convective) heat 
exchange in technological systems, based on numerical 
solution of multidimensional differential equation of heat 
conduction with complex boundary conditions. In this case, 
the finite-difference approximation of the heat conduction 
equation and boundary conditions is obtained by the integro-
interpolation method (balance method). To solve 
multidimensional heat exchange problems, a local one-
dimensional calculation scheme based on splitting the heat 
exchange process by spatial variables is used. Due to the 
known complexity of numerical implementation of heat 
transfer problems, calculations of complex heat exchange are 
recommended to be based on the additivity principle, and 
when recording finite-difference approximation of boundary 
conditions, it is advisable to use the radiation heat transfer 
coefficient. 

The considered approaches to mathematical modeling of 
the processes of combined heat exchange can be used in the 
study of thermal regimes of technological equipment in 
metallurgy, power engineering, mechanical engineering and 
other industries, as well as in the training of students of 
specialized specialties of universities.  

Thus, the solution of the fundamental problem of 
radiative heat transfer in the formulation adopted here (i.e., 
when a discrete consideration of temperature fields and 
optical constants is practically possible), ultimately comes 
down to calculating the angular coefficients (geometric 
radiation invariants) considered system of surfaces. 
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