Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://212.1.86.13:8080/xmlui/handle/123456789/5908
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorZhulkovskyi, Oleg-
dc.contributor.authorPetrenko, Ivan-
dc.contributor.authorSavchenko, Iurii-
dc.contributor.authorZhulkovska, Inna-
dc.contributor.authorDavitaia, Olena-
dc.contributor.authorTitov, Andrii-
dc.date.accessioned2023-10-13T06:29:58Z-
dc.date.available2023-10-13T06:29:58Z-
dc.date.issued2023-10-13-
dc.identifier.citationZhulkovskyi Oleg, Petrenko Ivan, Savchenko Iurii, Zhulkovska Inna, Davitaia Olena, Titov Andrii. Features of Mathematical Simulation of the Processes of Combined Heat Transfer in Waveguides. Proceedings of the 4th international conference on Modern Electrical and Energy System, 20 – 22 October, 2022. P. 452-456.uk_UA
dc.identifier.isbn978-1-6654-2366-3-
dc.identifier.urihttp://biblio.umsf.dp.ua/jspui/handle/123456789/5908-
dc.description.abstractMechanical means which are directly related to the information support path (locators, observation stations, accompaniment, detection, localization, etc.) require special attention within the framework of the technical channels of receiving information. Their accurate and stable performance is of the utmost importance. Loss of the mechanical properties occurs during operation, that is material wear. A special role in the development and study of technological systems, characterized by high temperature process conditions (in metallurgy, power engineering, mechanical engineering, etc.) is featured to the develop-ment of rational mathematical models of heat transfer processes. In practice there is a joint (compound) or a complex heat transfer, which combines heat conduction, convection and radiation heat transfer processes. Mathematical modeling method of compound (radiationconvective) heat transfer processes in techno-logical systems, based on the numerical solution of multidimensional differential heat conduction equation with complicated boundary conditions has been introduced. And at the same time finite-difference approximation of heat conduction equation and boundary conditions is obtained by integrointerpolation method (balance meth-od). A locally onedimensional method of calculation based on heat exchange process splitting in the spatial variables is applied to solve the multidimensional problems of heat exchange. Heat transfer calculations of complex heat exchange are recommended to carry out on the base of the additive principle considering the common difficulty of numerical implementation of heat transfer problems, but when recording finite-difference approximation of boundary conditions it is advantageous to use the radiation heat exchange coefficient. The approaches considered to mathematical modeling of compound heat transfer processes can be used to investigate the thermal conditions of the process equipment in metallurgy, power engineering, mechanical engineering and other industries, as well as in the students training of university specialties. Thus, the solution of the fundamental problem of radiative heat transfer in the formulation adopted here (i.e., when a discrete consideration of temperature fields and optical constants is practically possible), ultimately comes down to calculating the angular coefficients (geometric radiation invariants) considered system of surfacesuk_UA
dc.language.isoenuk_UA
dc.publisherKremenchuk Mykhailo Ostrohradskyi National Universityuk_UA
dc.relation.ispartofseriesProceedings of the 4th international conference on Modern Electrical and Energy System;20 – 22 October, 2022-
dc.subjectmodeluk_UA
dc.subjectheredityuk_UA
dc.subjecttemperatureuk_UA
dc.subjectdeformationuk_UA
dc.subjectcomposite materialsuk_UA
dc.subjectheredity nucleusuk_UA
dc.subjectparametersuk_UA
dc.titleFeatures of Mathematical Simulation of the Processes of Combined Heat Transfer in Waveguidesuk_UA
dc.typeArticleuk_UA
Располагается в коллекциях:Кафедра кібербезпеки та інформаційних технологій

Файлы этого ресурса:
Файл Описание РазмерФормат 
Scopus_13_MEES 2022_452_456.pdf591,15 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.