dc.contributor.author |
Трофимов, А. В. |
|
dc.date.accessioned |
2018-01-25T08:30:44Z |
|
dc.date.available |
2018-01-25T08:30:44Z |
|
dc.date.issued |
2018-01-25 |
|
dc.identifier.citation |
1. Трофімов О. В. Багатосіткові методи у зворотних задачах для систем із розподіленими параметрами / О. В. Трофімов // Вісник Академії митної служби України. Серія: “Технічні науки”. – 2014. – № 1 (51). – С. 140–147. 2. Trottenberg U. Multigrid / Trottenberg U., Oosterlee C. W., Schuller A. – N.-Y. : Academic Press, 2001. – 644 p. 3. Wienands R. Extended local Fourier analysis for multigrid: Optimal smoothing, coarse grid correction, and preconditioning : thesis / Wienands R. ; University of Cologne. – Cologne, Germany, 2001. 4. Wienands R. Practical Fourier Analysis for multigrid methods / R. Wienands, W. Joppich. – Boca Raton : Chapman & Hall/CRC Press, 2005. – 212 p. 5. Трофімов О. В. Застосування локального аналізу Фур’є для конструювання багатосіткових ітераційних методів розв’язання пружних та пружнопластичних задач для шаруватих основ / О. В. Трофімов // Вісник Академії митної служби України. Серія: “Технічні науки”. – 2015. – № 1 (53). – С. 140–155. 6. Писаренко Г. С. Уравнения и краевые задачи теории пластичности и ползучести / Г. С. Писаренко, Н. С. Можаровский. – К. : Наук. думка, 1981. – 496 с. 7. Thompson J. F. Handbook of Grid Generation / Thompson J. F., Soni B., Weatherill N. – N.-Y. : CRC Press, 1999. – 1096 p. 8. Трофимов О. В. Многосеточные итерационные алгоритмы построения сеток для упругих и упругопластических слоистых пакетов / О. В. Трофимов, Ю. В. Петрова // Вісник Академії митної служби України. Серія: “Технічні науки”. – 2015. – № 2 (54). – С. 69–81. |
uk_UA |
dc.identifier.issn |
2310-9645 |
|
dc.identifier.uri |
http://biblio.umsf.dp.ua/jspui/handle/123456789/2780 |
|
dc.description.abstract |
Предложена методика настройки многосеточного итерационного алгоритма
приближённого решения упругих и упругопластических граничных задач для слоистых оснований с криволинейными границами раздела между слоями. Задача распадается на две стадии: настройку алгоритма коррекции поправки на грубых сетках (CGC-алгоритма) и полного многосеточного алгоритма (FMG-алгоритма). Рассмотрены некоторые критерии оценки настраиваемых параметров алгоритмов. Выполнение указанной методики требует, помимо общего инструментария
для реализации многосеточных алгоритмов, использования набора релаксационных процедур, что, однако, составляет небольшую часть работы по разработке всего многосеточного программного инструментария. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Університет митної справи та фінансів |
uk_UA |
dc.relation.ispartofseries |
Системи та технології;№ 1 (55), 2016 |
|
dc.subject |
многосеточные методы |
uk_UA |
dc.subject |
криволинейные границы |
uk_UA |
dc.subject |
слоистые основания |
uk_UA |
dc.subject |
multigrid methods |
uk_UA |
dc.subject |
curvilinear boundaries |
uk_UA |
dc.subject |
layered basis |
uk_UA |
dc.title |
Многосеточные итерационные алгоритмы решения граничных задач для упругих и упругопластических слоистых пакетов с криволинейными границами |
uk_UA |
dc.title.alternative |
Multigrid iterative algorithms for layered elastic and elastoplastic bases with curvilinear boundaries’ boundary-value problems |
uk_UA |
dc.type |
Article |
uk_UA |