Короткий опис (реферат):
Кваліфікаційна робота присвячена дослідженню методів прогнозування мережевого трафіку в хмарних обчислювальних системах з використанням нейронних мереж.
У ході роботи проведено глибокий аналіз предметної області, зокрема основних принципів роботи хмарних обчислень, моделей надання послуг (IaaS, PaaS, SaaS) та структури мережевого трафіку. Особливу увагу приділено факторам, що впливають на трафік у хмарних середовищах, таким як географічне розташування користувачів, протоколи передачі даних, механізми безпеки та особливості архітектури хмарних систем.
Основним науковим результатом є розробка нейронної моделі для прогнозування трафіку в хмарних обчислювальних середовищах. Запропонована модель побудована на базі глибинних нейронних мереж і оптимізована для роботи з великими обсягами даних. Проведено навчання і тестування моделі на основі реальних даних з використанням сучасних метрик оцінки точності, таких як середня абсолютна помилка (MAE) та середньоквадратичне відхилення (RMSE). Запропоновані рішення сприяють удосконаленню методів прогнозування мережевого трафіку та можуть бути використані для подальшого розвитку систем управління трафіком.