DSpace Repository

Designing the structures of discrete solid­alloy elements for broaching the holes of significant diameter based on the assessment of their strength

Show simple item record

dc.contributor.author Nemyrovskyi, Y.
dc.contributor.author Shepelenko, I.
dc.contributor.author Posviatenko, E.
dc.contributor.author Tsekhanov, Y.
dc.contributor.author Polotnyak, S.
dc.contributor.author Sardak, S.
dc.contributor.author Bandura, V.
dc.contributor.author Paladiichuk, Y.
dc.date.accessioned 2022-05-17T09:26:07Z
dc.date.available 2022-05-17T09:26:07Z
dc.date.issued 2022-05-17
dc.identifier.citation Nemyrovskyi, Y., Shepelenko, I., Posviatenko, E., Tsekhanov, Y., Polotnyak, S., Sardak, S., Bandura, V., Paladiichuk, Y. Designing the structures of discrete solid­alloy elements for broaching the holes of significant diameter based on the assessment of their strength. Eastern-European Journal of Enterprise Technologies, 2020., 3(7 (105), 57–65. uk_UA
dc.identifier.issn 1729-3774
dc.identifier.issn 1729-4061
dc.identifier.uri http://biblio.umsf.dp.ua/jspui/handle/123456789/4769
dc.description.abstract This paper addresses the issues related to designing and estimating the strength of solid-alloy elements in the deforming broaches of significant diameter (exceeding 150 mm) for the developed process of discrete broaching. The tool limit condition was assessed based on two strength criteria: the specific potential energy of shape change and the maximum tangent stresses. Numerical modeling using the finite element method has made it possible to derive the distribution of equivalent stresses in the tool elements and the contact stresses at the surface of the contact between a solid-alloy insert and the body, which enabled the analysis of tool strength under loading. The simulation was performed under a single normal load, which ensured the versatility of the calculation for any contact pressure values. We have derived formulae to calculate the acceptable contact pressure depending on unit load. The effect of the insert protrusion height over the body on the strength of tool elements has been established. We have derived engineering dependences that determine the required magnitude of insert protrusion over the body depending on the ultimate load. An example of calculating the strength of a prefabricated deforming element in the machining of a sleeve made from gray modified cast iron of hardness HB230 has been considered. Our calculations have shown that the deforming element designed for the new technological process corresponds to the conditions of strength, provided the ratio h1/h=0.15 is maintained (where h1 is the insert height above the body, h is the insert height). The results obtained could be used in engineering calculations when designing the prefabricated tool for discrete deformation, as well as to assess the strength of prefabricated tools, such as cutters, core drills, reamers, when refining external loads uk_UA
dc.language.iso en uk_UA
dc.publisher ПП "Технологічний центр"; Український державний університет залізничного транспорту uk_UA
dc.relation.ispartofseries Eastern-European Journal of Enterprise Technologies;2020. №3(7 (105)
dc.subject deforming broaching uk_UA
dc.subject stressed state uk_UA
dc.subject solid alloy uk_UA
dc.subject discrete deforming element uk_UA
dc.subject element strength uk_UA
dc.title Designing the structures of discrete solid­alloy elements for broaching the holes of significant diameter based on the assessment of their strength uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account