Показати скорочений опис матеріалу
dc.contributor.author | Petrusenko, I.V. | |
dc.contributor.author | Sirenko, Yu.K. | |
dc.date.accessioned | 2017-05-24T11:16:23Z | |
dc.date.available | 2017-05-24T11:16:23Z | |
dc.date.issued | 2017-05-23 | |
dc.identifier.citation | Born, M. and Wolf, E., (1999), Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, Cambridge: University Press, - 985 p. Mittra, R. and Lee, S.W., (1971), Analytical techniques in the theory of guided waves, New York, The Macmillan Company, - 327 p. 3. Shestopalov, V.P. and Shcherbak, V.V., (1968), Matrix operators in diffraction problems, Izvestiya VUZ. Radiofizika, 9(2):285-295 (in Russian). 4. Petrusenko, I.V., (2004), Analytic – numerical analysis of waveguide bends, Electromagnetics, 24:237-254. 5. Petrusenko, I.V., (2006), Basic properties of the generalized scattering matrix of waveguide transformers, Electromagnetics, 26:601-614. 6. Petrusenko, I.V. and Sirenko, Yu.K., (2009), Generalization of the power conservation law for scalar mode-diffraction problems, Telecommunications and Radio Engineering, 68(16):1399-1410. 7. Petrusenko, I.V. and Sirenko, Yu.K., (2008), Abrupt discontinuities: the reflection operator is a contraction, Telecommunications and Radio Engineering, 67(19):1701-1709. 8. Shestopalov, V.P., Kirilenko, A.A., and Masalov, S.A., (1984), Convolution-type matrix equations in the theory of diffraction. Naukova Dumka, Kyiv: 296 p. (in Russian). 9. Weyl, H., (1997), The classical groups: Their invariants and representations, Chichester, Princeton University Press, - 316 p. 10. Richtmyer, R.D., (1978), Principles of advanced mathematical physics. Vol. 1, New York Heidelberg - Berlin, Springer-Verlag, - 422 p. | uk_UA |
dc.identifier.issn | 0040-2508 Print, 1943-6009 Online | |
dc.identifier.uri | http://hdl.handle.net/123456789/2401 | |
dc.description | Petrusenko, I.V., and Yu.K. Sirenko, “Fresnel formulae for scattering operators”, Telecommunications and Radio Engineering, 70 (9): 749-758, 2011. (USA) | uk_UA |
dc.description.abstract | For the scalar problem of mode diffraction onthe abrupt waveguide discontinuity the Fresnel formulae for the reflection and transmission matrix operators are derived using the mode‐marching technique. This generalized form of the matrix model is an immediate corollary of theproposed new statement of the problem. Making use of the energy conservation law in operatorform, the correctness of the obtained Fresnel formulae for the scattering operators is proved analytically. Thus, the developed approach makes it possible to substantiate completely thewidely used mode‐matching technique for the class of diffraction problems under consideration | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Begell House | uk_UA |
dc.relation.ispartofseries | Telecommunications and Radio Engineering Международный научный журнал по проблемам телекоммуникационной техники и электроники;2011, Volume 70, Number 9 | |
dc.subject | mode‐matching technique | uk_UA |
dc.subject | Cayley transform | uk_UA |
dc.subject | mode diffraction | uk_UA |
dc.title | Fresnel formulae for scattering operators | uk_UA |
dc.type | Article | uk_UA |