Показать сокращенную информацию
dc.contributor.author | Petrusenko, I. V. | |
dc.contributor.author | Sirenko, Yu. K. | |
dc.date.accessioned | 2017-05-24T10:14:25Z | |
dc.date.available | 2017-05-24T10:14:25Z | |
dc.date.issued | 2017-05-23 | |
dc.identifier.citation | 1. Mittra, R. and Lee, S.W., (1971), Analytical techniques in the theory of guided waves, New York, The Macmillan Company, - 327 p. 2. Peterson, A.F., Ray, I., and Mittra, R., (1998), Computational methods for electromagnetics, New York, IEEE Press, - 564 p. 3. Shestopalov, V.P., Kirilenko, A.A., and Masalov, S.A., (1984), Convolution-type matrix equations in the theory of diffraction, Naukova Dumka, Kyiv: 296 p. (in Russian). 4. Dudley, D., (1994), Mathematical foundations for electromagnetic theory, New York, IEEE Press, - 264 p. 5. Petrusenko, I.V., (2004), Analytic-numerical analysis of waveguide bends, Electromagnetics, 24(4):237-254. 6. Petrusenko, I.V., (2004), Matrix operator technique for analysis of wave transformers, 10th Intern. conf. on mathematical methods in electromagnetic theory (MMET’04): proc., Dnipropetrovs’k, pp. 118-120. 7. Petrusenko, I.V. (2006), Mode diffraction: analytical justification of matrix models and convergence problems, 11th Intern. conf. on mathematical methods in electromagnetic theory (MMET’06): proc., Kharkov, pp. 332-337. 8. Petrusenko, I.V. and Sirenko, Yu.K., (2011), Fresnel formulae for scattering operators, Telecommunications and Radio Engineering, 70(9):749-758. 9. Shestopalov, V.P. and Shcherbak, V.V., (1968), Matrix operators in diffraction problems, Izvestiya VUZ. Radiofizika, 9(2):285-295 (in Russian). 10. Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A., and Sirenko, Yu.K., (1986), Resonance scattering of waves, Vol. 1: Diffraction gratings, Naukova Dumka, Kiev: 232 p. (in Russian). 11. Shestopalov, V.P., Kirilenko, A.A., and Rud’, L.A., (1986), Resonance scattering of waves, Vol. 2: Waveguide discontinuities, Naukova Dumka, Kiev: 215 p. (in Russian). 12. Litvinenko, L.N. and Prosvirnin, S.L., (1984), Spectral operators of scattering in the problems of diffraction by planar screens, Naukova Dumka, Kiev: 239 p. (in Russian). 13. Weyl, H., (1997), The classical groups: Their invariants and representations, Chichester, Princeton University Press, - 316 p. 14. Petrusenko, I.V., (2006), Basic properties of the generalized scattering matrix of waveguide transformers, Electromagnetics, 26(8):601-614. 15. Petrusenko, I.V. and Sirenko, Yu.K., (2009), The lost “second Lorentz theorem” in the phasor domain, Telecommunications and Radio Engineering, 68(7):55-560. 16. Petrusenko, I.V. and Sirenko, Yu.K., (2009), Generalization of the power conservation law for scalar mode-diffraction problems, Telecommunications and Radio Engineering, 68(16):1399-1410. 17. Wainshtain, L.A., (1988), Electromagnetic waves, Radio i Svyaz’, Moscow: 440 p. (in Russian). 18. Hurwitz, А. and Courant, R., (1968), The theory of functions, Nauka, Moscow: 648 p. (in Russian). 19. Richtmyer, R.D., (1978), Principles of advanced mathematical physics. Vol. 1, New York Heidelberg - Berlin, Springer-Verlag, - 422 p. 20. Petrusenko, I.V. and Sirenko, Yu.K., (2008), Abrupt discontinuities: The reflection operator is a contraction, Telecommunications and Radio Engineering, 67(19):1701-1709. 21. Azizov, T.Ya. and Iohvidov, I.S., (1989), Linear operators in spaces with indefinite metric, In: Pure and Applied Mathematics, Chichester, J. Wiley&Sons, - 316 p. | uk_UA |
dc.identifier.issn | 0040-2508 Print, 1943-6009 Online | |
dc.identifier.uri | http://hdl.handle.net/123456789/2398 | |
dc.description | Petrusenko I. V., Sirenko Yu. K., “Generalized Mode-Matching Technique in the Theory of Guided Wave Diffraction. Part 1: Fresnel Formulas for Scattering Operators”, Telecommunications and Radio Engineering, 2013, v.72, No 5, pp. 369-384. | uk_UA |
dc.description.abstract | A generalization of the conventional mode‐matching technique corresponding to a new formulation of the problem of wave diffraction by waveguide discontinuities is рresented. The matrix‐operator formalism used in the study for the modal analysis is briefly described. Fresnel formulas are derived for the sought‐for operators of mode reflection and transmission in the canonical problem of step discontinuity in the guide. The correctness of the found matrixoperator model is proved analytically. It is shown that the obtained results are valid for a wide class of scalar problems of wave diffraction by step‐like discontinuities in the waveguide. The developed generalization of the mode‐matching technique is intended for efficient and rigorous analysis of waveguide units and microwave devices | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Begell House | uk_UA |
dc.relation.ispartofseries | Telecommunications and Radio Engineering Международный научный журнал по проблемам телекоммуникационной техники и электроники;2013, v.72, No 5 | |
dc.subject | mode‐matching technique | uk_UA |
dc.subject | Cayley transformation | uk_UA |
dc.subject | scattering operator | uk_UA |
dc.subject | Fresnel formulas | uk_UA |
dc.title | Generalized Mode-Matching Technique in the Theory of Guided Wave Diffraction. Part 1: Fresnel Formulas for Scattering Operators | uk_UA |
dc.type | Article | uk_UA |