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Abstract. The rigorous solution to the problem of wave scattering by a single inductive

post in a continuously curved rectangular waveguide is presented. The position of the

post and its radius are arbitrary. The waveguide curvature can be varied over wide

limits. An efficient mathematical model of the unit is based on the domain-product

technique. The theory developed is applied to the normalised reactances of the

discontinuity and the induced surface current. The results obtained lend support to the

validity of the known approximate solution for a thin post as far as this approximation

goes. It is found that data for a centrally placed post deviate slightly from those for a

straight guide in a broad interval of curvature variation. The off-centre shift affects the

characteristics appreciably. Over full waveguide bandwidth, the paper provides one

with the data that are essential in the design of devices containing the uniform bends,

such as band-pass filters or transmission resonators, etc.
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1. Introduction

The analysis of wave scattering by inductive obstacles in a waveguide has traditionally

attracted considerable attention in microwave theory [1-12]. A cylindrical post is a

subject of constant interest in the design of manifold filters [1, 2, 4-12] and many other

microwave devices [1-3]. Therefore, the correct analysis of the inductive posts in

various waveguiding structures is of great practical importance.

The circular post in a straight rectangular waveguide has been studied in details [4-

11]. The configuration has been analysed by a variety of methods. Some of them are

finite- and boundary-element methods [4, 5], the technique of equivalent sources [6, 7],

the variational approach [8], the Rayleigh hypothesis [9], singular integral equation

method [10], domain-product technique [11].

Scattering properties of the post in a curved guide are known less, though the

problem is valuable for applications as well. For example, the transmission resonators

and band-pass filters containing sections with the inductive posts of both the straight

rectangular waveguide and the continuously curved one can be proposed. Such filters

offer certain advantages in the wave band away from the central frequency [12].

The cylindrical post in the curved waveguide is difficult to analyse using traditional

techniques in view of the complicated geometry of the problem. Owing to the presence

of convex and concave boundaries simultaneously, the use of full numerical techniques

is not very efficient with respect to computational effort and accuracy.

This paper presents a novel rigorous solution to the problem of a circular post in a

uniformly curved rectangular waveguide. The domain-product technique (DPT) [13] is

applied to calculate the normalised reactances of the discontinuity and the induced

surface current in a wide range of curvature variation, any possible radius and arbitrary

location of the post in the interior of the waveguide bend. This approach is highly

efficient compared to full numerical methods because DPT reduces the problem to the

equation of the Fredholm type with nuclear matrix operator. That ensures the correct



and accurate mathematical model, the absence of spurious solutions, the validity of the

truncation procedure, the fast convergence of computed solution to the exact one and

robust calculations.

Here we deal only with a single inductive perfectly conducting (PEC) cylinder, but

the approach can be easily extended on the penetrable post with typical losses or post

array placed parallel to the narrow or broad wall of the guide.

2. Problem specification and mathematical modelling

The configuration of interest and the co-ordinate systems used are shown in Fig. 1. We

consider a circular post of a radius r , placed across the guide parallel to the narrow

PEC wall and centered at 1pR R dρ = = +  in the uniformly curved waveguide of the

width 2 12a R R= − . The geometry is a two-dimensional one and only the electric field

has nonvanishing yE -component. The guide is filled with a homogeneous lossless

medium and terminated in matching loads. The wave incident upon the post is the

dominant 10LM  mode travelling in the positive θ -direction. The convention of time

dependence is exp( )j tω  and 2 /k π λ=  is the wavenumber.

Let us divide the interior of the bend into the regular waveguide regions I and III,

and the interaction region II (Fig. 1). In regions I and III, the field can be represented in

terms of 0mLM –mode series expansions
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with the reflection R
mC  and transmission T

mC  coefficients to be found. The radial

distributions of the modes are defined by the cross eigenfunctions
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where

( ) ( ) ( ) ( ) ( )2 2 2,P k kR J k N kR J kR N kν ν ν ν νρ ρ ρ= −                (4)

is the cross-product Bessel function with norm Pν , Jν  and Nν are respectively the

Bessel and Neumann functions. The needed properties of ( )m kψ ρ  are described in

Appendix A.

The symmetry of the geometry makes it possible to subdivide the initial problem

into two subproblems corresponding to the symmetric and antisymmetric excitations,

subsequently referred to as “s” and “a”. Henceforth, the both types of the excitation are

presented simultaneously.

According with DPT, let us imagine the interaction region II as the common part of

five domains, namely

- the semi-infinite sector ( ){ }1, : , ;Rρ θ ρ α θ α> − < <

- the first guide ( ){ }1 2, : , ;R Rρ θ ρ θ α< < <

- the sector of annulus ( ){ }2, : ,R Rρ θ ρ α θ α< < − < <! , where the value of radius

( )10,R R∈!  is virtually of no importance;

- the second guide ( ){ }1 2, : , ;R Rρ θ ρ θ α< < > −

- the exterior to the post ( ){ }, : , .rρ θ ρ π θ π′ ′ ′ ′> − < ≤

The angle α π<  is assumed arbitrary, but greater than the viewing angle of the post.

Because of the linearity of the Helmholtz equation, its solution (2)
yE  can be

represented in the form
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where all the functions satisfy the same equation. Separating variables, we obtain
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a (1) a (3)
2 2 0n nb b= = . Here (2)Hµ  is symbolises the Hankel function. In (7), ˆ

nW  may be any

function, which is a regular solution of the Bessel equation in the interval 2R Rρ≤ ≤! .

One appropriate choice of this function is described in Appendix B.

Assuming that 2u  and 4u  vanish at 1 2,R Rρ = , we get
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with s (2) s (4)
n nb b= and a (2) a (4)

n nb b= − . Lastly, 5u is taken in the form
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where s , 0,1,...,nx n =  and a , 1,2,...,nx n =  are the expansion coefficients sought.

On the PEC surfaces, the boundary conditions can be written as
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In the interval 1 2R Rρ< <  the continuity conditions for the tangential electric and

magnetic fields are
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On satisfying the conditions (11)-(14) and using the orthogonality of the functions

nϕ , we find an infinite system of linear algebraic equations (SLAE)

( )I + A x = t    (15)

with the nuclear matrix operator A  (details of the procedure of such algebraisation are

given in [11]). Here I  is an identity. The structure of A , the right-hand vector t , and

the proof of correctness of the mathematical model obtained are given in Appendix C.

On truncating the systems (15) and subsequent inverting, the s a,x x  are found. Let

{ },

, 1

def MN M N
mn m n

a
=

=A  be a truncation of the nuclear operator ( N  is a number of modes

retained in the regions I, III) and ,N Mx  be the solution of a “truncated” counterpart of

SLAE (15). Then the relative error of approximation
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tends to zero with ,M N → ∞  because the first factor in the right-hand part of inequality

is a bounded constant, while the second one is decreasing [14]. The rate of decay of the

function ( ),N Mδ  can be taken as the cost of the algorithm [15]. As an alternative

estimate of truncation errors the function
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can be used too [16]. The behaviours of the functions ( ),N Mδ  and ( )K∆  are

illustrated in next section.

Scattering parameters, with 0, 0z = − +  as terminal planes, can be expressed through

expansion coefficients as

( )
( )

1

1

2
11 22 1 1

2
12 21 1 1

j vs R a R

j vs T a T

S S C C e

S S C C e

α

α

= = +

= = −
   (18)

In a single-mode band, the normalised parameters of an equivalent T-circuit of the post

junction can be found as in [6]
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3. Numerical results

The algorithm proposed is a very efficient one in the numerical implementation. Table 1

illustrates convergence of the algorithm subject to geometrical parameters of the unit.

The rate of stabilisation is extremely fast with respect to the truncation number M . It is

also seen that the unitary property of the S-matrix holds with a high precision.



The error functions (16) and (17) are shown in Figs. 2a and 2b. In computing δ , the

data corresponded to 20, 60M N= =  have been fixed as the reference values. One can

see that it is enough to take few equations to achieve the accuracy, which is sufficient

for engineering needs. As a result 14N =  and the 4 4×  SLAE can be proposed for the

evaluation of physical characteristics. For this size of the truncated matrix the accuracy

is 45 10δ −< ⋅ . Fig. 2b also shows typical values of the condition number, which are

fairly close to the unity. In all the cases, we cite the greater values of the errors and

condition numbers found in the numerical process for two subproblems considered.

According to known approximate approach, a strip is used to simulate the thin post

in a straight guide [10]. The admissibility of this substitution for a curved guide was

indicated in [12, 17]. Using Lewin’s method for the first-order approximation [10], the

relations
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have been obtained [17]. The comparison with the latter as well as with the limiting case

of a straight guide ( )1 ,R a const→ ∞ =  is given in Fig. 3. Here, the normalised

reactances (19) are exhibited as a function of /r a  for the centered post ( )d a= ,

various curvatures and a fixed operation frequency. It is interesting to view that the thin-

strip approximation (20) is more suitable for a large curvature than a small one. One can

see that a slight deviation from the straight guide data takes place even for a sharp bend

with ( )1 1 2/ 1/ 3R a R R< < .

Fig. 4 presents the normalised reactances as a function of /r a  for the off-centered

post ( )0.6d a=  and various ratios 1 2/R R . In contrast to the previous case, the reactance

CX  depends strongly on the curvature and the curves begin to disperse distinctly just for



thin posts ( )0.05r a≈ . The effect is correlated with a noticeable shift of yE -distribution

from the post, as it is illustrated in Fig. 5. In Fig. 4, the LX  curve behaviour indicates

that the range, within which the approximation (20) is valid, is sufficiently smaller.

Figs. 6 and 7 present the reactances depending on the position of the post centre,

operating wavelength and the curvature. The asymmetry of the characteristics about the

medial line of the waveguide is clearly visible. It is seen that there are positions of the

post and frequency points where LX  or CX  is practically independent of the curvature.

The following figures are dealing with the current induced on the post surface. The

current can be derived from the electric field as follows
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where ˆ ρ′u  and ˆ yu  denote the unit vectors in the ρ′  and y  directions, respectively.

Figs. 8 and 9 show the current distributions against azimuth θ′  for the centered and off-

centered posts respectively. Here, the intervals ( )180 , 0− "  and ( )0,180"  correspond to

the “illuminated” portion of the post surface and the “shadow” one. Because of nonzero

curvature the current has asymmetric distribution in both regions even for the centered-

post structure. In the case of a smooth enough bend, the results are in good agreement

with the data from [7, 11].

4. Conclusions

The problem of a circular inductive post in a uniformly curved rectangular waveguide

has been solved using the DPT. All the cases of thin and large ( )0 r a< <  arbitrarily

placed ( )1 2pR R R< <  posts have been considered over a broad range of curvature

variation ( )1 20.1 / 1R R≤ < . Taking advantage of the physical symmetry plane, the



problem has been partitioned into two independent subproblems differing in a mode of

excitations to get the maximum efficiency of the computational procedure.

The initial boundary value problem has been reduced to an infinite SLAE. It has

been proved analytically that the matrix equation is of the Fredholm type with the

nuclear operator. The rapidly convergent numerical algorithm has been developed to

obtain the scattering matrix, the parameters of the equivalent T-network and the current

induced on the post surface. The new data have been determined with low

computational cost and at the same time the accuracies achieved are excellent with

respect to any engineering needs.

The results computed show the good correlation with the approximate solution,

which has been derived by the Lewin method. All the data obtained for a smooth bend

( )1 2/ 0.9R R ≥  agree well with those for the limiting case of a straight guide.

Over full waveguide bandwidth, the paper provides one with the data that are

essential in the design of devices containing the uniform bends with posts, such as

transmission resonators or band-pass filters.
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Appendix A

In a cylindrical frame, Fig. 1, the solution of the Helmholtz equation can be easily found

via the variable separation method. Considering 0 , 1, 2,...,mLM m =  modes as circulating

waves, an appropriate form for their yE -component is

( ) j
yE k e νθ

νυ ρ ±= (22)

Here ( )kνυ ρ  is an eigenfunction of the Sturm-Liouville problem for Bessel’s equation

of order ν . On the finite interval 1 20 R Rρ< ≤ ≤ , the set of these eigenfunctions forms

a complete orthonormal set of square integrable functions [18].

On the two curved walls yE  must vanish, and this leads to the cross-product Bessel

function
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and to the modal equation
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In eqn. (23), the norming quantity c  is found according to the relationship between

solutions of the Bessel equation [19]
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Here νµδ  is the Kronecker delta.

In this paper, we use the special norm
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according to the orthogonality condition for the cross eigenfunctions (3)
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It provides the required quasistatic approximation for 1m >>

( ) 2sin lnm
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The high-order approximation to the angular propagation constant , 1,2,...,m mν =

and k ν−  diagram for the modal equation (24) are given in [20].

Appendix B

In order to avoid division by zero during computations let us construct the solution of

the Bessel equation

( ) ( ) ( ) 2
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which does not vanish for any real value of the wavenumber. For this purpose ˆ
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- normalisation condition ( )2
ˆ 1nW kR = ;

- additional requirement ( ) 2
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= < <!  for robust calculations.

The solution sought takes the form
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Appendix C

Below the designations
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are used to make formulae less cumbersome. Hereinafter, the upper and lower symbols

are connected with the symmetric and antisymmetric case respectively.

It can be shown in analogy to the result of the paper [11] that in eqn. (15) the matrix

operator has the structure
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Let us introduce an auxiliary vector
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The elements of 1, 2,3,i i =F ,  and G  are described by the formulae
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 ∂  = +  ∂−    
(39)

( ) ( )
( ) ( )

2

1

(2)1/ 2

(2)

'2
'

R
n

mn n m
m nR

H km d
g cs k

j H kr
θ α

ρ ρθ ψ ρ
σν θ ρ

−

=−

  ∂ =   ∂   
∫ (40)

Matrices , 1,3,i i =D  are defined by the elements

( ) ( )(1) 1 (3) 1
1 2

ˆ ˆ,mn p mn p mn mn p mn p mnd d W kR d d d H kR d− − + − + −   = Λ − = Λ −    (41)

where

( ) ( )2 1
ˆ ˆ1p p pH kR W kRΛ = − (42)

( ) ( )
( ) ( )

2 1

(2)
,

(2)
0 ,

2
,n

mn n p
p n R R

H k
d cs d

H kr

α

ρ

ρ
θ ϕ θ θ

ε α
+ −

=

 ′
′= −  

 
∫ (43)

Finally, the right-hand part of eqn. (15) takes the form { }(2)
1 / 2mt≡t ∓ .

The proof of the correctness of the proposed model is based on the Fredholm

property of eqn. (15). It is sufficient to show that A  is a compact matrix operator in the

Hilbert space

( ) 2

1
0

: 1
def

n n
n

h x n x
∞

=

 = + < ∞ 
 

∑ (44)



and the right-hand part 1h∈t  [14].

Compactness of the operator (34) follows from asymptotic estimates of the

integrals (36), (38), (40) and (43), which are Fourier’s coefficients of the functions

being differentiable infinitely many times. Namely, the estimation formulae

1,3 2
(1,3) (2) 1/ 2ˆ,

! !

q
m ml n l

m
mn q mn

p p

e r e r
t O t O n

m R m R

µ π πµ
σ

− −
+

      
   = =               

; , 1m n% ; pr R& (45)

2

1

ln , , lnp

p

R R

R R

α
σ

   
=           

l

give us 1h∈t  and lead to the inequalities

( )

( )

2(1,3)
1,3

,

2(2)
2

,

1

ˆ 1

, , , 0
2

mn
m n

mn
m n

p

m t O

m t O

r r r

d R a d

β

τ

ζ

ζ

β τ
α

∞ −

∞
−

 = − < ∞
 

 = − < ∞ 

 
= > >  − 

∑

∑

ζ

(46)

under conditions 1, 1, 2,3i iζ < = . Hence, 1,3 2
ˆT , T  are the Hilbert-Schmidt (H.-S.)

operators 1 1h h→  [14] provided that the post does not touch the boundaries of the

interaction region II. Under the same condition, we get

( )

2 2(1,3) ( , )

, ,

( , ) (2) (1,3)

1
, , 1, 2,3

, ,

m n
mn i

m n m n

m n
mn mn mn

f i
n

f g d

ξ
∞ ∞

< ∞ < ∞ =

=

∑ ∑
ξ

(47)

Therefore, 1 3, , , , 1,2,3,i i =D D G F  present the H.-S. operators as well. Thus, 1 1: h h→A

is the nuclear operator as a sum of products of the H.-S. operators [14].



Table 1. Scattering characteristics subject to the truncation numbers ,M N  and the parameters

,d r  and 1 2/R R  for / 2 1.4286aλ = , ( )2 2

11 21 11 21 12 22,PCL S S ORT S S S S= + = + .

/ 0.2, / 0.1, 40d a r a N= = =

1 2/R R M 11| |S 11arg S PCL ORT

0.1

1
2
4
8

12

0.088746
0.088546
0.088536
0.088536
0.088536

1.705305
1.706329
1.706341
1.706341
1.706341

1.000003
1.000003
1.000003
1.000003
1.000003

0.000004
0.000004
0.000004
0.000004
0.000004

0.4

1
2
4
8

12

0.139468
0.138933
0.138932
0.138932
0.138932

1.730135
1.730920
1.730921
1.730921
1.730921

0.999999
0.999999
0.999999
0.999999
0.999999

-0.000001
-0.000001
-0.000001
-0.000001
-0.000001

0.9

1
2
4
8

12

0.151754
0.151394
0.151406
0.151406
0.151406

1.733333
1.733933
1.733935
1.733935
1.733935

1.000002
1.000001
1.000001
1.000001
1.000001

0.000002
0.000001
0.000001
0.000001
0.000001

/ 0.2, / 0.1, 10d a r a M= = =

1 2/R R N
11| |S 11arg S PCL ORT

0.1

2
5

10
20
40

0.096980
0.087857
0.088511
0.088533
0.088536

1.531685
1.695090
1.705070
1.706186
1.706341

1.026847
1.001607
1.000170
1.000025
1.000003

0.029461
0.001853
0.000223
0.000031
0.000004

0.4

2
5

10
20
40

0.135502
0.138662
0.138918
0.138930
0.138932

1.728173
1.733175
1.731010
1.730933
1.730921

1.001399
0.999324
0.999976
0.999996
1.000000

-0.000119
-0.000705
-0.000030
-0.000005
-0.000001

0.9

2
5

10
20
40

0.148575
0.151204
0.151390
0.151396
0.151396

1.715790
1.734106
1.733814
1.733921
1.733935

1.004367
0.999877
1.000034
1.000005
1.000001

0.004387
-0.000121
0.000034
0.000005
0.000001

/ 1, / 0.5, 40d a r a N= = =

1 2/R R M
11| |S 11arg S PCL ORT

0.1

1
2
4
8

12

0.999999
0.999770
0.999889
0.999889
0.999889

-1.994400
-1.918815
-1.911811
-1.911795
-1.911795

0.999998
0.999999
0.999999
0.999999
0.999999

0.000001
0.000001
0.000001
0.000001
0.000001

0.9

1
2
4
8

12

0.997720
0.999985
0.999999
0.999999
0.999999

-1.924362
-1.851008
-1.844055
-1.844053
-1.844053

0.999999
0.999999
0.999999
0.999999
0.999999

0.000000
0.000000
0.000000
0.000000
0.000000

/ 1, / 0.5, 10d a r a M= = =

1 2/R R N
11| |S 11arg S PCL ORT

0.1

2
5

10
20
40

0.986429
0.999654
0.999844
0.999884
0.999889

-1.912672
-1.911519
-1.911772
-1.911792
-1.911795

0.973209
0.999518
0.999907
0.999988
0.999999

0.024541
0.000377
0.000079
0.000010
0.000001

0.9

2
5

10
20
40

0.992587
0.999732
0.999963
0.999995
0.999999

-1.847440
-1.843906
-1.844051
-1.844052
-1.844053

0.985337
0.999464
0.999927
0.999990
0.999999

0.005329
-0.000156
0.000008
0.000000
0.000000



FIGURE CAPTIONS

Fig. 1. Geometry of the problem and pertinent co-ordinate systems.

Fig. 2. The error functions δ  and ∆  against (a) the number of modes N  in the curved

waveguide and (b) the matrix truncation number M  (left-hand logarithmic axes). (b)

Condition number of the matrix approximation (right-hand linear axis).

0.25 , , / 2 1.4r a d a aλ= = = , 1 2/ 0.5R R = .

Fig. 3. Circuit parameters against a radius size for centered post, / 2 1.4aλ = .

Fig. 4. Circuit parameters against a radius size for off-centered post, 0.6d a= ,

/ 2 1.4aλ = .

Fig. 5. The transverse distribution of the yE -component of the incident wave and the

relative position of the off-centered posts of various sizes, / 2 1.4aλ = .

Fig. 6. Circuit parameters against position of the post for 0.3 , / 2 1.2r a aλ= = .

Fig. 7. Circuit parameters against / 2aλ  for off-centered large post, 0.6 , 0.3d a r a= = .

Fig. 8. Real part (a) and imaginary part (b) of the surface current on the centered post,

/ 2 1.2aλ = .

Fig. 9. Real part (a) and imaginary part (b) of the surface current on the off-centered

post, 0.6d a= , / 2 1.2aλ = .
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