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1. INTRODUCTION 

A paradoxical situation has arisen in the computational electrodynamics long ago 
concerning the use of the mode-matching technique (also known as the method of the 
partial contiguous regions) for solving problems of wave diffraction by a discontinuity 
in the waveguide. On the one hand, this technique proves to be in demand and 
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apparently the most widespread since it is rather universal, relatively simple to 
implement and allows obtaining numerical results which are quite acceptable for the 
modern engineering practice. While on the other hand, no satisfactory substantiation of 
this numerical-analytical method in the general case has been suggested by the present 
time which means that application of the mode-matching technique to the majority of 
practically important problems differs but slightly from a heuristic approach. 

As is known, the classical mode-matching technique always leads to the 
mathematical model in the form of an infinite system of linear algebraic equations. The 
recent, most appreciable surge of interest toward studying the mode-matching 
technique falls on the period when the phenomenon of the relative convergence of 
approximate solutions to such matrix equation had been demonstrated both analytically 
and numerically, first for the special problem on waveguide bifurcation (see book [1] 
and references therein) and then for other problems as well [2,3]. However, the further 
efforts undertaken to prove the existence, uniqueness and robustness of the solution to 
these systems of linear algebraic equations of the mode-matching technique and 
determining convergence conditions for projection approximations have not yielded 
any significant new results [4]. 

In our opinion the evident stagnation in the development of the theory of the 
mode-matching technique during a long time indicates a basic unsuitability of the 
matrix model in the form of an infinite system of linear algebraic equations for solving 
the problem of validation of this method.  

We assert that the infinite systems of linear algebraic equations with respect to the 
vector of unknown coefficients of the (generalized) Fourier series representing the 
field phasor are not intrinsic of the mode-matching technique per se. They appear only 
in connection with a certain and as it seems rather special formulation of the mode 
diffraction problem. 

The conventional statement of the problem of mode diffraction by a waveguide 
discontinuity is as follows. A specified single waveguide mode is scattered by a 
discontinuity and it is necessary to find amplitudes of the excited modes (both 
propagating and evanescent ones). 

A corollary of the problem formulation like this is all the above mentioned 
mathematical difficulties which can be eliminated through changing the problem 
statement to the following (more natural in our opinion). Let an electromagnetic wave 
of a finite power be incident upon a discontinuity. The incident field consists of an 
infinite set of modes with any known amplitude distribution. It is necessary to find the 
scattering operators. 

If the diffraction problem is posed as suggested above, then application of the mode-
matching technique yields an equation with respect to the scattering operator rather than 
an infinite system of linear algebraic equations [5-8]. The method of introducing this 
scattering operator consists in replacing the unknown vector of the Fourier coefficients 
belonging to the space of sequences Н, ,Hx  by the sough-for matrix operator 

: H HX  and will be referred to in what follows as the matrix operator technique. In 
the applied electrodynamics this approach had appeared to be consistently implemented 
for the first time in the work [9]. 
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For the canonical problem on a uniform bend of a rectangular waveguide it has 
been found [5] that this new approach naturally leads to the Fresnel formulas 
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      (1) 

 
for matrix operators of reflection R  and transmission T  (here the given operator D  is 
determined by the geometry of the problem and depended on the field frequency  ). 
Later this result has been disseminated on the problem of mode diffraction by other 
kinds of waveguide discontinuities [6-8]. 

This paper (in three parts) is aimed at briefly presenting new results of the theory 
of the mode-matching technique generalized through introducing matrix operators as 
applied to those problems which leads to the operator-based Fresnel formulas 
including a rigorous substantiation of the correctness of the matrix model Eq. (1) (the 
present paper), an analytical proof of the applicability of the truncation procedure for 
determining approximate solutions and a factorization of the generalized scattering 
matrix (the papers are under preparation for publication). 

Note that the presented approach can be also regarded as a further development of 
the spectral scattering operator method [10-12]. 

 
2. SCALAR MODAL ANALYSIS 

Let the field in a simple (partial) region V  be completely determined by the scalar 
phasor  rUU


,  which is dependent on the radius-vector Vr 


 and satisfies the 

wave equation 
 

,2  UkU          (2) 
 

where k  is the wavenumber, ,0Im k  and the function  r


,  specifies 

the field source. A region will be referred to as simple if it allows solution of a given 
boundary-value problem for the Helmholtz equation Eq. (2) by the variable separation 
method in a suitable coordinate frame. Here we assume that the region V  is 
represented by a finite or semi-infinite section of a regular waveguide. 

Let us write the ordinary expansion of the phasor in waveguide modes in the form 
 

   
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where  
1m m

x



x  is the row-vector of the sought-for complex coefficients to be 

determined and      1mm rr


  is the column-vector of the known functions 
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representing modes of the given regular waveguide. In what follows we will consider 
the “normal modes” of the form 
 

     exp , 1, .m m mr r m     
 

     (4) 
 

Here   rm


 denotes the eigenfunction of a homogeneous boundary-value problem 

for a transverse cross-section of the regular waveguide, r


, and m  is the 

propagation constant of m-th mode along the longitudinal axis O  of the waveguide. 

The regular representation Eq. (4) makes it possible to determine the structure of  r


  
in a matrix-vector form, viz. 

 

      rr


ψE .                     (5) 
 

Here we have introduced a diagonal matrix operator     expmn m   E  such 

that  0 E I  is an identity operator, and also a column-vector of real-valued 

transverse eigenfunctions  r


ψ , whose basic properties are defined by the following 
equalities 

 

       ; , .Τ Τr r r r    
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     (6) 

 
Here we have used the conventional notation for the Dirac delta-function and scalar 
(bilinear) product of functions, and superscript “ T ” stands for the transposition. 
Making use of the formulas Eqs. (3) and (5) the derivative of the phasor along the 
waveguide axis O  can be represented in the form 

 

       ;U r r r         x E ψ
  

  ,     (7) 
 

where     expmn m m     E . To simplify writing further mathematical 

manipulation we will use the notation  0 I E . 

The flux of the oscillating power through the transverse cross-section of the 
waveguide within the plane 0  can be written up to inessential factors as 

 

  TT
osc UUF aaxIx   0],[ ,      (8) 

 

where 21/
 Ixa . The complex power flux through the same cross-section   is 

determined by the value 
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where the asterisk “  ” and the dagger “ † ” mean the complex and Hermitian 

conjugations, respectively, and а   1/ 2 1 2 exp arg/
mn mi  

 
       U I I I  is the 

operator of the waveguide port (or portal operator) which is uniquely defined under the 
condition 0,m m   . 

Let P  modes be propagating for a working frequency in the given waveguide. 
Consider the orthoprojectors 
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such that Paa   and Qaa   are vectors of the amplitudes of the propagating and 
evanescent modes, respectively. Also note that the portal operator is a unitary one, 

†1 UU  , and it follows from the representation PQU i  that its numerical range 
lies completely in the forth or first quadrant of the complex plane in accordance with 
the selected time flow direction )(exp ti . 

Finally, let us postulate that the complex power flux through the waveguide, 
 

                                           
22
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is a bounded quantity, cmpF  (at that we automatically obtain the condition 
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complex numbers. 

 
3. MATRIX-OPERATOR FORMALISM 

Now, we will set forth the fundamentals of the matrix operator technique as applied to 
scalar problems of the theory of stationary diffraction of the waveguide modes. 

According to the new formulation of the diffraction problem let us represent the 
solution of the Helmholtz equation Eq. (2) in the form of a series, viz. 
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where the row-vector   1mmbb  is given and      1mm rur


u is the column-vector 

of the functions to be determined (compare with the representation Eq. (3)). In view of 
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the known arbitrariness of specifying the vector b the standard formulation of the 
electrodynamic problem is transferred onto the function  r


u  which should satisfy, in 

particular, the Helmholtz equation and the given boundary conditions. Therefore, in 
each regular waveguide for each unknown function   ...,2,1, mrum


, we have the 

usual expansion in waveguide modes in accordance with the superposition principle 
for the fields of incident, reflected and transmitted waves. 

In other words the representation of the considered phasor U  in the form of the 

decomposition Eq. (11) is equivalent to the replacing the Fourier coefficients  1mmx  

in the mode expansion of the field Eq. (3) in elements of an infinite matrix whose 
physical meaning is the scattering operator. So, the sought-after unknowns are the 
operators of mode reflection and transmission. 

The vector space for b  and the function space for   ...,,2,1, mrum


 should be 

selected such that the initial phasor Eq. (11) will belong to the Sobolev space  VH 1 . It 
proves that the all obtained formulas are characterized by the maximum simplicity and 
symmetry when 2b . In this case it is necessary to standardize the sought-for 

scattering operators to the form 22:  R  and 22:  T  (see, for example, [5]). 
According to the matrix operator technique let us introduce the representation 

Lba  , where 22:  L  is a suitable scattering operator (specific implementations 
of this operator will be presented in the next Section). Then, according to the relation 
Eq. (8) the oscillating power flux through the plane 0  is proportional to the value 
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, T T
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     bLL b .     (12) 

 

Note that the figuring here operator TLL  shows a characteristic symmetry with respect 
to the transposition. The formula Eq. (9) for the complex power flux through the same 
cross-section yields 
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0
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

 
     bL U L b .     (13) 

 
Taking into account the properties of the portal operator, we find that the numerical 

range of the operator †LUL  lies within the forth or first quadrant of the complex 
plane. These properties of the operators in the relations Eqs. (12) and (13) play the key 
role in the further analysis. 
 

4. THE OPERATOR-BASED FRESNEL FORMULAS 

Consider the canonical problem of scattering the ...,2,1,0 mLM m  or ...,1,0,1 mLEm  
modes by a step discontinuity in a hollow infinite rectangular waveguide with perfectly 
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conducting walls specified in a Cartesian coordinate frame. Geometrically the domain 
of field definition      ,;,0;2,1, zlysx s  can be separated into two 

contiguous partial regions with transverse cross-sections l1  and l2 . Without 

loss of generality we will assume in what follows that  21 . The reference 

plane is coincided with the discontinuity aperture   0;,0;2  zlyx . The time 

dependence is assumed to be )(exp ti . 

Let the scalar function  zxUq
p ,  stands for the phasor determining all 

components of the electromagnetic field in waveguide q, whose source is located in 
waveguide p ( 2,1, qp ). The field of this source contains the complete spectrum of 

modes  10 mmLM  or  01 mmLE  with any known distribution of amplitudes collected in 

the row-vector   21)0( 


mm
pp bb . 

The continuity condition for the tangential electric and magnetic field components 
on the reference plane written in the form 
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bring us to the implication 
 

 
  .0,

,

,

,0

,0
2

21

21
2

21

21 




















zx

p
z

p
z

pp
p

pp
z

p

ppp

uu

uu
b

uub

uub
   (14) 

 

The key point here is that the vector bp  is common for the two partial regions. Similar 
reasoning leads us to the homogeneous boundary conditions 
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on the step face. 

The mode expansions for the functions under consideration on the reference plane 
are as follows  2,1, qp  
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Substitution of the expressions Eqs. (16) and (17) into Eq. (14) yields the following set 
of matrix equalities for 2x  
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while from the boundary conditions Eq. (15) we found 
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By applying the Galerkin procedure to the relations Eqs. (18) and (19) we formally 
obtain the desired solution 
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Here we have used the notation 
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The derived solution Eq. (20) represents the Fresnel formulas for the operators of 

waveguide mode reflection and transmission. 
The existence of the inverse operators in the solution Eq. (20) follows from the 

conservation law for the complex power and will be proven rigorously in Section 6. 
Here we will mention the symmetry properties of the scattering operators which 
emerge from the form of the obtained solution. Indeed, from the first Fresnel formula 
we obtain 
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since p
T
p DD  , 2,1p  by the definition Eq. (21). The symmetry property of the 

transmission operator TT qpTpq   is checked by the direct substitution. 
Note that the first operator-based Fresnel formula in Eq. (20) is also known as the 

Cayley transformation [13] (in what follows we will use both these names as 
equivalent). Provided the existence condition for this transform is met,  pD1 , it 

proves to be invertible, viz. 
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Here the Cayley transforms have been written in the Weyl’s form [13]. 

 
5. RECIPROCITY PRINCIPLE AND POWER CONSERVATION LAW IN THE 

OPERATOR FORM 

In the phasor domain, four basic energy laws should be taken into account [14-16]. These 
are the first and second Lorentz theorems [15], the theorem of the oscillating power 
[17] and the well-known complex power theorem. For the problem under consideration 
these theorems yield the presented below four groups of operator equalities which 
determine the basic properties of the scattering operators [5,8,14]. In the course of 
derivation of these equalities the fundamental property of the space 2  is used; namely, 
each operator is unambiguously determined by own quadratic form. 

Thus, the continuity condition for the oscillating power flux through the 
discontinuity aperture and the first Lorentz lemma yield four matrix relations as 
follows 
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,2,1,,,,
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pq

qp

Tq
z
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pTp
z

p









uuuu

uuuu
     (24) 

 
Combining these equalities with the representations Eqs. (16), (17) and (19) and 
making use of the orthogonal property of the transverse eigenfunctions Eq. (6) we 
arrive at 

 

TTRR qpTpqpTp  , ;        (25) 
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ITTR  Tpqpqp 2 ;        (26) 
 

  0
Tqpqpqp TRTR .        (27) 

 

Usually these operator relations are written in the form of the symmetry SS T  and 

involutivity IS 2  (or SS 1 ) of the generalized scattering matrix. The latter 
property means that the operators   2/SI  are projectors (but not orthoprojectors), 

whence it follows that the spectrum  S  consists of only two points  1,1   of 

infinite multiplicity and S  is the symmetry (but not canonical symmetry) of the space 

2 . As a result, the generalized immitance (i.e., the Cayley transform of the operator S) 
for step-like discontinuities is indefinable [14]. 

Next, the corollaries of the continuity of the complex power flux through the 
discontinuity aperture and the second Lorentz lemma will be the following equalities 
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



uuuu

uuuu
   (28) 

 

Whence it follows that 
 

    †† TUTRIURI pq
q

pqp
p

p  ;    (29) 
 

    †† TURIRIUT qp
p

pq
q

pq  .    (30) 
 

The operator relations Eqs. (29) and (30) are combined in a simple equality for the 
characteristic scattering operator [16] 

 

     .,diag,0 21
† UUUSIUSIG     (31) 

 

The obtained operator form Eq. (31) of the energy conservation law is valid for all 
problems of wave diffraction by step-like waveguide discontinuities [14,16]. 

As will shown in what follows, the relations Eqs. (25) through (27) make it 
possible to extend the operator Fresnel formulas to cover the entire class of mode 
diffraction problems for the planar two-port waveguide transformers. Whereas the 
power conservation law in the operator form Eqs. (29) to (31) guarantees the existence, 
uniqueness and robustness of the obtained solution Eq. (20). 

 
6. UNIVERSALITY OF THE OPERATOR MODEL 

The operator-based Fresnel formulas Eq. (20) identically satisfy the equations 
Eqs. (25) to (27) which can be easily verified through direct substitution. Now, we will 
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show that in their turn these power relations, which are valid for the entire class of 
problems under consideration, lead to the operator-based Fresnel formulas. 

To this end let us write the equality Eq. (26) in the form 
 

    TT TTRIRI       (32) 
 

and will treat it as an equation with respect to the operators of mode reflection and 
transmission. In this Section to simplify writings the superscripts ,p q  are omitted. It 

follows from this equation that the spectral points  R  and  TTT  belong 
to the algebraic curve 
 

 ,,12 ,                  (33) 

 
which allows a known solution to the uniformization problem in the form of rational 
functions (see, for example, [18]). This solution can be written as 
 

 
1,

1

4
,

1

1
2








 t
t

t

t

t
.    (34) 

 
Based on the spectrum mapping theorem (see, for example, [19]) we conclude that 
there exists an operator D such that      D 1/1t  and the following 
representation is valid 

 

 
 

















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1

IDRI

DIDRI

ID

ID
R     (35) 

 
Taking into account the symmetry property of the reflection operator Eq. (25) we 

obtain T
00

~~
DDD  , where 0

~
D : 22    is so far an arbitrary bounded matrix operator. 

Then the equality Eq. (32) with account of the relations Eq. (35) yields the second 
Fresnel formula 

  0
12 DIDT  .       (36) 

 

Here we have used the notation CDD 00
~

 , where the second multiplier possesses the 

property ICC T , such that it can be immediately set T
00DDD  . Now, the arbitrary 

bounded matrix operator 0D  should be redefined by the complex power conservation 

law Eq. (31), what will be done in Section 7. Note that it seems impossible to 
distribute the rational functions in the equalities Eq. (34) in a different way since it 
then leads to violation of the relations Eqs. (25) and (27). 
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Thus, the possibility in principle of parameterization of the curve Eq. (33) with the 
use of the one-valued functions Eq. (34) in this case guarantees the existence of a 
single operator of the problem, which completely determines the laws of mode 
reflection and transmission. So, we have proved the 
Theorem 1. Each problem of mode diffraction by step-like waveguide discontinuity 
for which the reciprocity theorem and the oscillating power theorem hold in the form 
of the equalities Eqs. (25) through (27) can be mathematically modeled by the 
operator-based Fresnel formulas Eqs. (35) and (36). 

 
7. CORRECTNESS OF THE OPERATOR-BASED FRESNEL FORMULAS 

In terms of the Cayley transform pD  the power conservation law in the forms 

Eqs. (29) to (31) takes an especially simple form which allows investigating the basic 
properties of this operator and, in doing so, proving the correctness of the matrix-
operator model in the form of the Fresnel formulas Eq. (20). 

First, it results from the formula Eq. (31) that all operator representations of the 
complex power conservation law follow from the common condition 
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U
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U
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which singles out this elementary operator of the problem from the whole set of 
bounded matrix operators. In the case of the considered canonical problem of a step 
discontinuity in a rectangular waveguide the condition Eq. (37) coincides with the 

property of bilinear scalar product of real-valued eigenfunctions  Im , 0T
p q ψ ψ . 

Second, the energy conservation law Eq. (29) can be written in the form 
 









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




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These equalities mean that the numerical range of the operator  †
pppp UDUD , 

,2,1p  lies completely in the fourth (first) quadrant of the complex plane. Based on 

the well-known geometrical properties of the space 2  it has been established in paper 

[20] that on this condition the operator pD  is an m-accretive, i.e., 0Re pD . In this 

proof the conceptions and ideas of the theory of operators in a space with indefinite 
metric (in the Pontrjagin space [21] in the case under consideration) are used. 

Proceeding from the property of the Cayley transform 
 

10Re  RD p
p       (39) 
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we conclude that the reflection operator represents a strict contraction. Thus, we have 
Theorem 2. The solution of the problem of mode diffraction by a waveguide step 
discontinuity in the form of the Fresnel formulas for the scattering operators Eq. (20) 
exists and is unique. 

Next, let us introduce into consideration the operator   1

p p


  A D I  

 1

2 p I R  for which through direct calculations we find 

 

    .0ReReRe ††††  ppppppppppp ADAAAADAAAA   (40) 
 

Therefore, this operator represents an m-accretive contraction, †Re ppp AAA  . 

Let us define the condition number of this matrix operator after the formula 

  1cond  ppp AAA  which yields the following estimate 

 

                                            .1cond1  pp DA  

 

Ipso facto we have proven the stability of the obtained solution Eq. (20) on the set of 
bounded operators, which act in the entire space 2 . 

 
8. DIVERSITY OF THE FORMS OF THE PROBLEM SOLUTION 

Equivalent transformations of the operator-based Fresnel formulas Eq. (20) lead to 
other effective forms of the sought-for solution. Let us represent here the found 
solution through the above introduced operator 2,1, ppA , in such tabular format as 
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Making use of the generalized scattering matrix S this representation can be brought in 
obvious way to the compact form 
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in which the diagonal operator matrices 
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are, respectively, the canonical symmetry of the space  22 , m-accretive contraction 
and symmetrical operator of the problem. Having extracted the square root of the 
operator A we arrive at the relation 
 

                                           1
0000

 JVJVA  , 
 
where the right-hand part of this equality determines the m-accretive operator. 

Thus, the sought-for solution takes a simple form, viz. 
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,22 0

2/11
000 JAJVJS  ,   (41) 

 
which is especially convenient for computations. 

Another equivalent representation of the solution, which follows from the formula 
Eq. (41), is the Cayley transform 
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relating the operator matrices 
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The expression Eq. (42) can be effectively used for computations as well. 

 
9. CONCLUSIONS 

The typical of the standard mode-matching technique formidable problems of proving 
the existence, uniqueness and robustness of the solution to the infinite system of linear 
algebraic equations are the corollaries of the generally accepted special formulation of 
the diffraction problem rather than of the mode-matching technique itself. 

The proposed new formulation of the problem of wave diffraction results in natural 
generalization of the conventional mode-matching technique. In substance, the novel 
approach implies changing the unknown Fourier coefficients with elements of the 
sought-for matrix operator of scattering (the matrix operator technique in the theory of 
diffraction). As a result, the correctness of the obtained matrix model of the 
generalized mode-matching technique can be proven rigorously. 

From this new standpoint the matrix model in the form of an infinite system of 
linear algebraic equations corresponds by no means to the essence of the mode-
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matching technique, but rather represents an absolutely unjustified truncation of the 
general matrix-operator equation which leads to a fatal loss of the necessary 
information about properties of both the solution itself and the specified operator of the 
problem. 

The above presented fundamentals of the matrix operator technique as applied to 
the scalar problems of stationary diffraction of waveguide modes make it possible to 
introduce matrix operators of scattering in a natural manner as the true sought-for 
unknowns of the mode-matching technique. 

The derivation of the Fresnel formulas for the operators of mode reflection and 
transmission Eq. (20) is demonstrated by way of example of the canonical problem of 
wave diffraction by a step discontinuity in the H- and E-plane of a rectangular 
waveguide. 

The obtained results of applying the generalized mode-matching technique can be 
disseminated on other scalar problems of mode diffraction by an abrupt waveguide 
discontinuity, i.e., by a discontinuity whose inherent volume is zero. The possibility of 
separation this class of problems from the variety of the waveguide mode diffraction 
problems follows from the basic energy laws. Namely, if we write for two-port planar 
waveguide transformers four basic energy laws for a volume dV  containing a step 

discontinuity, then by passing to the limit 0dV  with account of the edge condition 

we arrive at the formulas Eqs. (24) and (28). Therefore, the class of mode diffraction 
problems under consideration is completely defined as such for which the relations 
Eqs. (25) to (27) and (29) to (31) relating the sought-for matrix operators of scattering 
hold. 

If for each problem of the class in question we assume the existence of a common 
“operator of the problem” which is determined by the discontinuity geometry and 
depends on working frequency, then, as has been found, the energy relations Eqs. (25) 
to (27) imply the existence of the matrix model in the form of the Fresnel formulas for 
the mode reflection and transmission operators Eq. (20). 

It has been proven that the correctness of the operator-based Fresnel formulas is 
the direct corollary of the complex power conservation law and the second Lorentz 
lemma written in the operator form Eqs. (29) to (31). Thus, the problem of the rigorous 
justification of the matrix model of the generalized matching technique has been 
completely solved. 

The derived operator-based Fresnel formulas beget various equivalent forms of the 
solution which make it possible to disclosure the structure of the generalized scattering 
matrix. It is advantageous to use the solution in the form of Eqs. (41) and (42) for 
constructing effective computational algorithms. 

The developed and rigorously justified method of analyzing the mode diffraction by 
waveguide discontinuities can be regarded as a generalization of the conventional mode-
matching technique widely used in the applied electrodynamics. 
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