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Domain Product Technique Solution for
Scattering by Cylindrical Obstacle in

Rectangular Waveguide

VITALIY P. CHUMACHENKO
IGOR V. PETRUSENKO

Gebze Institute of Technology
Gebze, Turkey

The canonical problem of scattering by a cylindrical obstacle in a rectangular wave-
guide is rigorously reexamined in the framework of the domain product technique. An
accurate, rapidly converging algorithm is based on the ef� cient series representation
of the � eld in a rectangular interaction region. It is shown that the fast convergence
of the numerical approximation is stipulated by mathematical properties of the matrix
operator arising from the boundary value formulation. The solution is also validated
by comparison with the data of other authors. The approach proposed can be ap-
plied to the analysis of scattering by real metallic or dielectric posts placed parallel
to the narrow or broad wall of the guide, in the theory of the circular-rectangular
coaxial waveguide and the theory of other structures containing circular obstacles in
the rectangular coupling region.

Keywords inductive post, waveguide discontinuities, domain product technique

Introduction

The problem of electromagnetic wave scattering by cylindrical obstacles in a rectangular
waveguide has been treated by a variety of methods. An earlier approach, proposed by
J. Schwinger (Schwinger & Saxon, 1968) and recently modi� ed by Toyama and Sawado
(1992), is the variational method for the problem of perfectly conducting (PEC) posts.
It was proved that the elements of the impedance/admittance matrix are stationary with
respect to small variations of the current distribution on the post about the true current.
Many published papers are based on the so-called Rayleigh hypothesis (see, for example,
Nielsen, 1969; Abdulnour & Marchildon, 1993; Wang, Wu, & Litva, 1997). In addition
to the validity problem of the hypothesis, we observe that the technique usually leads
to the ill-conditioned matrix equation of the � rst kind. As a consequence, results are
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474 V. P. Chumachenko and I. V. Petrusenko

unstable with increasing the number of modes retained in the resulting algebraic system
(Abdulnour & Marchildon, 1993), and the condition number may be as large as 1010

and over.
A multi� lamentary current model was successfully applied by Leviatan et al. (1983)

and Leviatan, Shau, and Adams (1984). A special approximation of the posts by a � -
nite number of strips is used by Auda and Harrington (1984). Ise and Koshiba (1988)
utilized a combination of the � nite and boundary-element methods. Shunt posts in mi-
crostrip transmission lines were investigated by Finch and Alexopoulos (1990) using
the multipole expansion method and the technique of the precise summation of the
Schloemilch-type series. A combination of the boundary-element method and analytic
expansions was applied by Abdulnour and Marchildon (1994). Commonly, data obtained
are validated by computational experiment in the form of “numerical convergence” and
comparative checks. A formal rigorous solution, based on the method of image and the
addition theorem for cylindrical functions, was given by Moshinsky and Berezovsky
(1977).

This paper presents an alternative rigorous analytical approach for solving the out-
lined class of problems that is quite straightforward and effective. The formulation has
mathematical features that allow � rm statements concerning properties of the numer-
ical approximation. It is proved analytically that the method leads to a matrix equa-
tion of the second kind with kernel operator. That ensures the validity of the trunca-
tion procedure, the convergence of approximations to the true solution, and a stable
algorithm.

In order to avoid unnecessary details, we choose the simplest possible con� guration:
a PEC post placed across the guide parallel to the narrow wall and parallel to the electric
� eld of the dominant mode. To merge the circular and rectangular coordinate systems used
in the analysis we also introduce an intermediate region of the form similar to that used
by Nielsen (1969). However, the � eld is constructed in a different fashion. The region is
considered as a common part (product in set-theoretic sense) of several auxiliary regions
with separable geometry, and solution is based on the domain product technique (DPT)
(Chumachenko, 1978). After certain manipulations, an initially somewhat cumbersome
formulation is reduced to a simple algebraic system with respect to expansion coef� cients
that are associated with the auxiliary region related to the post. After truncation, a very
small number of equations is retained in the system to guarantee a given accuracy of the
solution. The computer results agree well with the published ones (Leviatan et al., 1983;
Leviatan, Shau, & Adams, 1984). The method provides a reliable, rapidly converging
algorithm for any � nite radius and for any location of the obstacle in the interior of
the guide.

Boundary Formulation and Field Representation

The con� guration of interest and the coordinate systems are shown in Figure 1. A PEC
post of a radius r is centered at a distance d from the narrow wall of the waveguide.
The width of the guide is 2a. The convention of time dependence is ej!t . The dominant
mode, of a unit amplitude, is incident from the left. The geometry is a two-dimensional
(2D) one and only the electric � eld has a nonvanishing y-component u D Ey . The u must
satisfy the 2D Helmholtz equation with the homogeneous Dirichlet boundary conditions
on the conducting boundaries. The interior of the guide is divided into the waveguide
regions I and III, and the interaction region II.
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Cylindrical Obstacle in Waveguide 475

Figure 1. Geometry of the problem and pertinent coordinate systems.

Let us symbolize the � eld component u as u.1/, u.2/, and u.3/ in regions I, II, and
III correspondingly. Then, we have

u.1/ D ¿ 1.x/e
¡°1.zCa/ C

1

S
nD1

Rn¿ n.x/e
°n.zCa/; (1)

u.3/ D
1

S
nD1

Tn¿ n.x/e
¡°n.z¡a/: (2)

Here

¿ n.x/ D sin
³
n¼.x C a/

2a

´
; (3)

°n D
r³n¼

2a

2́
¡ k2; (4)

k D 2¼=¸, and ¸ is the free space wavelength. The Rn and Tn are the re� ection and
transmission coef� cients to be found.

The Helmholtz equation is a linear one and its solution u.2/ can be represented in
the form of a superposition of some other functions being solutions to the equation, for
instance,

u.2/ D ur C
4

S
iD1

ui : (5)

Let us imagine region II as a common part of several semi-in� nite basic regions and
suppose that they are domains of de� nition of the functions used in (5). Namely, let
ur , u1, u2, u3, and u4 be de� ned in domains {.½; µ /: ½ > r;¡¼ < µ · ¼}, {.x; z/:
x > ¡a; jzj < a}, {.x; z/: jxj < a; z < a}, {.x; z/: x < a; jzj < a}, and {.x; z/:
jxj < a; z > ¡a}, respectively. To guarantee uniqueness of the solution, we put the
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476 V. P. Chumachenko and I. V. Petrusenko

functions introduced under the condition at in� nity. On the rays limiting the regions, we
set the requirements that provide a desired choice of the type of the expansion for u1,
u2, u3, and u4. The conditions on the parts of the boundaries terminating the auxiliary
regions follow from the boundary conditions of the original problem.

Separating variables, we obtain

ur D E0
H

.2/
0 .k½/

H
.2/
0 .kr/

C
1

S
nD1

.En cos nµ C Fn sin nµ/
H

.2/
n .k½/

H
.2/
n .kr/

; (6)

where H
.2/
n is the Hankel function and En , Fn are the unknown expansion coef� cients.

Assuming that u2 and u4 vanish at x D ± a, we get

u2 D
1

S
nD1

D.2/
n ¿ n.x/e

°n.z¡a/; (7)

u4 D
1

S
nD1

D.4/
n ¿ n.x/e

¡°n.zCa/: (8)

The u1 and u3 assume the form

u1 D
1

S
nD0

D.1/
n  n.z/e

¡°n.xCa/; (9)

u3 D
1

S
nD0

D.3/
n  n.z/e

°n.x¡a/; (10)

 n.z/ D cos
n¼.z C a/

2a
; (11)

under quali� cation @u1=@z D @u3=@z D 0 at z D ± a.
Now, boundary conditions on the conducting parts of the boundaries of the region

II can be written as

ur C u1 C u3 D 0; x D ± a; (12)

ur C
4

S
iD1

ui D 0; ½ D r: (13)

The conditions that guarantee continuity of the tangential electric and magnetic � elds
across the plane z D ¡a are given by

ur C
4

S
iD1

ui D u.1/; z D ¡a; (14)

@

@z
.ur C u2 C u4/ D

@u.1/

@z
; z D ¡a: (15)

Similar relations are valid at z D a.
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Cylindrical Obstacle in Waveguide 477

There are no doubts about the validity of such a representation of the � eld in region
II. On the one hand, expression (5), constructed in the above fashion, is a solution to the
Helmholtz equation inside the region. On the other hand, it provides a complete set of
functions at any piece of the region boundary. The last gives an opportunity to satisfy
any reasonable boundary condition.

Analyzing condition (12) and bearing in mind (6), (9), and (10), we see that D.1/
n and

D
.3/
n are the coef� cients of the Fourier cosine series of some smooth functions. It means

that D.1/
n and D

.3/
n must decrease at least as O.1=n2/ when n increases (Tolstov, 1976).

It follows from the matching conditions at z D ± a that D.2/
n and D

.4/
n are the Fourier

sine coef� cients of some smooth functions vanishing as x ! ± a. That again leads to
the estimates D

.2/
n , D.4/

n D O.1=n2/. At ½ D r, functions u1, u2, u3, and u4 are periodic
with respect to µ and, being solutions to the Helmholtz equation, are differentiable an
in� nite number of times in the interior of their domains. Due to (6) and (13), it means
that the En and Fn are Fourier’s coef� cients of a highly smooth function and must tend
to zero very rapidly. Therefore, our intention is to reduce the problem to an algebraic
system containing the En and Fn only.

Considering the Symmetry

The structure under study has a plane of symmetry z D 0. It can be used to sort our
problem into two subproblems with the number of the unknown terms reduced to half.
That is of great importance for the more effective numerical computations. We represent
the solution as a sum of two solutions corresponding to the symmetric and antisymmetric
excitations. We mark the related quantities by superscripts “s” and “a” if their values
change. In the � rst case, we obtain

su.1/ D
1

2
¿ 1.x/e

¡°1.zCa/ C
1

S
nD1

sRn¿ n.x/e
°n.zCa/; (16)

su.3/ D
1
2
¿ 1.x/e

°1.z¡a/ C
1

S
nD1

sRn¿ n.x/e
¡°n.z¡a/; (17)

sFn D sD
.1/
2n¡1 D sD

.3/
2n¡1 D 0; (18)

sD.4/
n D sD.2/

n : (19)

In the antisymmetric case, we have

au.1/ D
1

2
¿ 1.x/e

¡°1.zCa/ C
1

S
nD1

aRn¿ n.x/e
°n.zCa/; (20)

au.3/ D ¡
1
2
¿ 1.x/e

°1.z¡a/ ¡
1

S
nD1

aRn¿ n.x/e
¡°n.z¡a/; (21)

sEn D aD
.1/
2n D aD

.3/
2n D 0; (22)

aD.4/
n D ¡aD.2/

n : (23)
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478 V. P. Chumachenko and I. V. Petrusenko

Algebraization

In what follows, we consider both types of excitation simultaneously. Designations

o D
(
s

a

)
; ® D

(
2m

2m ¡ 1

)
; ¯ D

(
2n

2n ¡ 1

)
; ¿ D

(
0
1

)
;

´ D
(C1

¡1

)
; An D

(
En

Fn

)
; cn.µ/ D

(
cos nµ
sin nµ

)
;

(24)

where the upper and lower symbols are connected with the symmetric and antisymmetric
case, respectively, will make mathematical manipulations less cumbersome. We start with
the substitution (6), (9), and (10) into (12). The resulting equations are then multiplied on
each side with  ® and integrated over z. Considering (18), (19), (22), (23) and making
use of the orthogonality of the  ® functions, we get

D.1/
® C D.3/

® e¡2°®a C
1

S
nD¿

d¡
®nAn D 0; (25)

D.1/
® e¡2°®a C D.3/

® C
1

S
nD¿

dC
®nAn D 0; (26)

where

d±
®n D

2

"ma

Z a

0

"
cn.µ/

H
.2/
n .k½/

H
.2/
n .kr/

#

xD± a

 ®.z/dz; (27)

"m D 2; m D 0; "m D 1; m ¸ 1: (28)

Expression (27) has been written, taking into account the evenness of the integrand with
respect to z. Combining equations (25) and (26), we � nd

D.1/
® D

1

S
nD¿

Qd®nAn; D.3/
® D

1

S
nD¿

Od®nAn; (29)

where

Qd®n D t®.d
¡
®n ¡ e¡2°®a dC

®n/; (30)

Od®n D t®.d
C
®n ¡ e¡2°®a d¡

®n/; (31)

t® D 1=.e¡4°®a ¡ 1/: (32)

The use of the matching conditions (14) and (15) yields after similar manipulations

oD.2/
m D

´

2

( 1

S
nD¿

[q.1/m¯D
.1/
¯ C q

.3/
m¯D

.3/
¯ C .oq .4/mn ¡ ofmn/An] C ±1m

)
; (33)

oRm D
´

2

( 1

S
nD¿

[e¨
m.q

.1/
m¯D

.1/
¯ C q

.3/
m¯D

.3/
¯ / C .e¨

m
oq.4/mn ¡ e±

m
ofmn/An] C ±1me

¡2°1a

)
:

(34)
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Cylindrical Obstacle in Waveguide 479

Here

e±
m D e¡2°ma ± 1; (35)

q
.1/
m¯ D

m¼

2a2 [.¡1/me¡2°¯a ¡ 1]
¿"

° 2
¯ C

³m¼

2a

2́#
; (36)

q
.3/
m¯ D .¡1/mC1q

.1/
m¯ ; (37)

oq .4/mn D ¡
1
a

Z a

¡a

"
cn.µ/

H
.2/
n .k½/

H
.2/
n .kr/

#

zD¡a

¿m.x/dx; (38)

ofmn D ¡
1

a°m

Z a

¡a

@

@z

"
cn.µ/

H
.2/
n .k½/

H
.2/
n .kr/

#

zD¡a

¿m.x/dx: (39)

In (34), the upper plus or minus corresponds to the symmetric excitation, and the lower
to the antisymmetric one. Next, we substitute (29) into (33) to express sD

.2/
m and aD

.2/
m

in terms of En and Fn. We have

oD.2/
m D

1

S
iD¿

oamiAi C
´

2
±1m (40)

with

oami D
´

2

" 1

S
nD¿

.q
.1/
m¯

Qd¯i C q
.3/
m¯

Od¯i/ C oq
.4/
mi ¡ ofmi

#
: (41)

Substituting (6)–(10) into (13) and working as before, we arrive at

1

S
nD¿

p
.1/
m¯D

.1/
¯ C

1

S
nD1

op.2/
mn

oD.2/
n C

1

S
nD¿

p
.3/
m¯D

.3/
¯ C Am D 0; (42)

where

p
.1/
m¯ D

2

"m¼

Z ¼

0
[ ¯.z/e

¡°¯.xCa/]½Drcm.µ/dµ; (43)

op.2/
mn D

2
"m¼

Z ¼

0
[.e°n.z¡a/ C ´e¡°n.zCa//¿n.x/]½Drcm.µ/dµ; (44)

p
.3/
m¯ D

2

"m¼

Z ¼

0
[ ¯.z/e

°¯ .x¡a/]½Drcm.µ/dµ: (45)

Finally, using (29) and (40), we eliminate D
.1/
¯ , oD

.2/
n , and D

.3/
¯ in (42). That gives us

two uncoupled in� nite systems with respect to En and Fn:

Em C
1

S
iD0

sbmiEi D ¡
1

2
sp

.1/
m1; (46)

Fm C
1

S
iD1

abmiFi D
1

2
ap

.1/
m1; (47)
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480 V. P. Chumachenko and I. V. Petrusenko

where

obmi D
1

S
nD¿

.p
.1/
m¯

Qd¯i C p
.3/
m¯

Od¯i/ C
1

S
nD1

op.2/
mn

oani : (48)

In the matrix form both (46) and (47) can be rewritten as

.I C oB/A D og; (49)

where I is an identity, oB D {obmi}, A D {Am}, and og D ¡ ´
2 {op.1/

m1}. Matrix oB

presents the so-called kernel operator (the details are given in the appendix). This fact
guarantees, in particular, (a) the boundedness of the inverse matrix operator for equations
(46) and (47), (b) the validity of the truncation procedure, and (c) the convergence of
approximations to the true solution.

On truncating systems (46) and (47) and subsequent inverting, the En and Fn are
found. Other expansion coef� cients can be obtained using (29), (34), and (40). Integrals
(27), (38), (39), and (43)–(45) are conveniently computed based on numerical techniques.
For terminal planes z D 0± , the elements of the scattering matrix are given by

S11 D S22 D .sR1 C aR1/e
2°1a ; (50)

S12 D S21 D .sR1 ¡ aR1/e
2°1a : (51)

For operation frequency between the cutoffs of the T E10 and T E20 modes, the normalized
parameters of an equivalent T-circuit of the discontinuity can be found as

X D ¡j2S21=[.1 ¡ S11/
2 ¡ S2

21]; (52)

Y D j .1 C S11 ¡ S21/=.1 ¡ S11 C S21/: (53)

Numerical Validation

In this section, we present numerical results that validate the theory developed and il-
lustrate its ef� ciency. Let M be max n in (6) and N D max n in (1), (2), and (7)–(10)
after truncation. M also determines the order of the truncated systems (46) and (47).
Table 1 illustrates convergence of the algorithm. Last decimals are rounded. The rate of
stabilization of the data obtained is extremely high with respect to M . In the range of
the post dimensions, encountered commonly in practice, it is enough to use M D 1 ¥ 3,
N D 5 in systems (46) and (47) to achieve accuracy suf� cient for engineering needs. In
the last two sections of Table 1, data are presented that characterize the unitary property
of the S-matrix. Despite the fact that the unitary condition is not an entirely adequate
tool for the accuracy evaluation (Shestopalov, Kirilenko, & Masalov, 1984), they also
con� rm the validity of the solution.

In Figure 2, the calculated values of the reactances are compared with the data
obtained by Leviatan et al. (1983). They completely agree with our results within drawing
precision. Figure 3 shows the real parts of currents induced on the post that have known
counterparts (Leviatan, Shau, & Adams, 1984). Some discrepancies, which are most
conspicuous for small values of the r=a ratio, are due to the multi� lamentary model.

The performed numerical investigation and the established properties of the matrix
operator turn the algorithm into a reliable tool for comparative checks. For the post cen-
tered in the waveguide, we have solved the above problem using the Rayleigh hypothesis,
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Cylindrical Obstacle in Waveguide 481

Table 1
Dependencies of the S-matrix elements on the truncation numbers M, N ,

and the geometrical parameters d and r for a=¸ D 0:35
(PCL D jS11j2 C jS21j2, ORT D S11S21 C S12S22).

d=a D 0:2, r=a D 0:1, N D 40

M jS11j arg S11 jS21j arg S21

1 0.152444 1.733263 0.988312 0.162469
2 0.152111 1.733836 0.988364 0.163042
5 0.152112 1.733837 0.988364 0.163043

10 0.152112 1.733837 0.988364 0.163043

d=a D 0:2, r=a D 0:1, M D 5

N jS11j arg S11 jS21j arg S21

1 0.146147 1.693725 0.994160 0.156507
2 0.149397 1.715330 0.991045 0.159842
5 0.151931 1.733987 0.988333 0.162818

10 0.152108 1.733713 0.988382 0.163035
20 0.152111 1.733826 0.988366 0.163042
40 0.152112 1.733837 0.988364 0.163043

d=a D 0:6, r=a D 0:5, N D 40

M jS11j arg S11 jS21j arg S21

1 0.999311 ¡2.190575 0.037108 2.521810
2 0.999028 ¡2.124246 0.044067 2.588141
3 0.999152 ¡2.117523 0.041164 2.594864
5 0.999146 ¡2.117144 0.041296 2.595242

10 0.999146 ¡2.117143 0.041297 2.595244
20 0.999146 ¡2.117143 0.041297 2.595244

d=a D 0:6, r=a D 0:5, M D 10

N jS11j arg S11 jS21j arg S21

1 0.977358 ¡2.097857 0.022178 1.868905
2 0.994023 ¡2.122385 0.031834 2.624531
5 0.998931 ¡2.117037 0.041010 2.593123

10 0.999113 ¡2.117145 0.041252 2.595188
20 0.999142 ¡2.117142 0.041292 2.595230
40 0.999146 ¡2.117143 0.041297 2.595244

(continued)
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482 V. P. Chumachenko and I. V. Petrusenko

Table 1
(Continued)

d=a D 1, r=a D 0:9, N D 40

M jS11j arg S11 PCL ORT

1 0.992999 ¡0.758778 0.999998 0.000001
2 0.999072 ¡0.597320 0.999999 0.000002
3 0.999952 ¡0.544489 0.999999 0.000002
4 0.999999 ¡0.533255 0.999999 0.000002
5 1.000000 ¡0.531709 0.999999 0.000002

10 1.000000 ¡0.531633 0.999999 0.000002
20 1.000000 ¡0.531633 0.999999 0.000002

d=a D 1, r=a D 0:9, M D 10

N jS11j arg S11 PCL ORT

1 0.992604 ¡0.522419 0.986193 0.028824
2 0.993057 ¡0.534606 0.986602 0.029233
5 0.999941 ¡0.531618 0.999882 0.000666

10 0.999976 ¡0.531647 0.999952 0.000092
20 0.999997 ¡0.531634 0.999994 0.000012
40 1.000000 ¡0.531633 0.999999 0.000002

Figure 2. Circuit parameters versus r=a for d=a D 0:6 and a=¸ D 0:3571. Solid lines: this
technique; circles: data from Leviatan et al., 1983.
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Cylindrical Obstacle in Waveguide 483

Figure 3. Real part of current versus µ for d=a D 1 and a=¸ D 0:4167. Solid lines: this technique;
circles: data from Leviatan, Shan & Adams, 1984.

just as was done by Abdulnour and Marchildon (1993). To reduce the condition number
and intensify the ef� ciency of the computational procedure, the problem was separated in
the above manner into two subproblems for the symmetric and antisymmetric excitations.
The results obtained lend support to the validity of the Rayleigh hypothesis. In spite of
the extremely high condition number, the agreement was fairly good in a wide frequency
range for both small and larger posts. Figure 4 shows typical behavior of the maximums
of the condition numbers for two methods discussed. In each case, we cite the greater
value found for two subproblems in the numerical process.

Conclusion

The problem of the scattering of electromagnetic waves by a single cylindrical obstacle
in a rectangular waveguide is formulated in the framework of the DPT. The problem
is reduced to two independent linear systems with respect to the coef� cients of the
expansion associated with the post. Analytical study has shown that matrix operators that
occur in the solution possess remarkable properties. As a consequence, the systems can
be ef� ciently solved numerically. The high-accuracy values of the scattering matrix and
the parameters of the equivalent circuit are determined with low computational cost in
the entire range 0 < r < a. The data, excellent for any engineering needs, can be found
with an extremely small number of equations retained after truncation. The computed
results show good agreement with the data obtained by other authors.

After obvious modi� cation, the approach developed can be used for analysis of
scattering by one or several real dielectric or metallic posts placed in a rectangular
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484 V. P. Chumachenko and I. V. Petrusenko

Figure 4. Condition number versus number of equations retained after truncation for d=a D 1 and
a=¸ D 0:8. Circles: this technique (N D 40, left-hand linear axis); squares: technique based on
Rayleigh hypothesis (right-hand logarithmic axis).

waveguide parallel to the narrow or broad wall. It can also be applied in the theory of the
circular-rectangular waveguide. Similar ideas can be used in the analysis of the H - or
E-plane waveguide junctions (such as, for example, T - or cross-junction) with posts in
connecting cavity. The high-accuracy numerical data, given in the previous section, can
serve in testing computations with more general geometry.

Appendix

Because

A 2 Q̀2; Q̀2 ´
(
xn :

1

S
nD1

njxnj2 < 1
)
;

(Shestopalov, Kinilenko, & Masalov, 1984) it is convenient to change A and og for

QA ´ {n1=2An} 2 `2 and oQg ´
(
m1=2 ¡´

2
op

.1/
m1

)
:

It can be readily veri� ed that o Qg 2 `2 as well. Let us rewrite the matrix operator in (49)
in the form

o QB D
³
P1 C

´

2
oWQ1

´ QL C
³
P3 C

´

2
oWQ3

´ OL C oW.oG ¡ oF/;
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Cylindrical Obstacle in Waveguide 485

where the matrices introduced are de� ned as follows:

Pi ´ {m1=2p.i/
mn}; oW ´ {.mn/1=2op.2/

mn}; Qi ´ {m¡1=2q .i/mn}; i D 1; 3;

QL ´ {n¡1=2 Qdmn}; OL ´ {n¡1=2 Odmn}; oG ´ {.mn/¡1=2 oq .4/mn}; oF ´ {.mn/¡1=2 ofmn}:

With the help of Parseval’s theorem, we � nd that

S
m;n

1

n
jd±

mnj2 < 1; S
m;n

1

mn
joq .4/mnj2 < 1; S

m;n

1

mn
jofmnj2 < 1

for any possible radius of the post. Hence, QL, OL, G, and F are the Hilbert–Schmidt (H–S)
operators `2 ! `2 (Reed & Simon, 1972).

As to matrices Pi , i D 1; 3, and oW for n À 1 the integrals (43)–(45) can be reduced
to the known ones (Gradshteyn & Ryzhik, 1994, (3.932)) and we obtain

S
m;n

mjp.i/
mnj2 D O[.1 ¡ vi/

¡® ; ® > 0; i D 1; 3;

S
m;n

mnjop.2/
mnj2 D O[.1 ¡ v2/

¡¯ ]; ¯ > ® > 0;

where

Ev ´
³
r

d
;
r

a
;

r

2a ¡ d

´
:

Therefore, the Pi , i D 1; 3, and oW also present the H–S operators provided the post
does not touch the boundaries of the interaction region II. Finally, owing to

S
m;n

1

m
jq .i/mnj2 < 1;

the same holds for matrices Qi , i D 1; 3.
Thus, matrix operator o QB : `2 ! `2 is the kernel operator (as a sum of products

of the H–S operators) and the analytical Fredholm alternative is valid for the resulting
system (49) (Reed & Simon, 1972).
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