Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://212.1.86.13:8080/xmlui/handle/123456789/2405
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPetrusenko, I.V.-
dc.contributor.authorSirenko, Yu.K.-
dc.date.accessioned2017-05-24T12:05:06Z-
dc.date.available2017-05-24T12:05:06Z-
dc.date.issued2017-05-23-
dc.identifier.citation1. Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A., and Sirenko, Yu.K., (1986), Resonance scattering of waves, Vol. 1: Diffraction gratings, Naukova Dumka, Kiev: 232 p. (in Russian). Shestopalov, V.P., Kirilenko, A.A., and Rud’, L.A., (1986), Resonance scattering of waves, Vol. 2: Waveguide discontinuities, Naukova Dumka, Kiev: 215 p. (in Russian). 3. Litvinenko, L.N. and Prosvirnin, S.L., (1984), Spectral operators of scattering in the problems of diffraction by planar screens, Naukova Dumka, Kiev: 239 p. (in Russian). 4. Shestopalov, V.P., Kirilenko, A.A., and Masalov, S.A., (1984), Convolution-type matrix equations in the theory of diffraction, Naukova Dumka, Kiev: 293 p. (in Russian). 5. Mittra, R. and Lee, S.W., (1971), Analytical techniques in the theory of guided waves, New York, The Macmillan Company, 327 p. 6. Petrusenko, I.V., (2004), Analytic – numerical analysis of waveguide bends, Electromagnetics, 24:237-254. 7. Gohberg, I.C., and Krein, M.G., (1969), Introduction to the theory of linear nonselfadjoint operators, New York, Amer. Math. Soc., 448 p. (translated from the Russian). 8. Petrusenko, I.V., (2004), Matrix operator technique for analysis of wave transformers, Proc. 10th – Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET’04), Dnipropetrovs’k, pp.118-120. 9. Brodskii, M.S., (1971), Triangular and Jordan representations of linear operators, New York, Amer. Math. Soc., 286 p. (translated from the Russian). 10. Brodskii, M.S., and Lifshits, M.S., (1960), Spectral analysis of nonselfadjoint operators and intermediate systems, Transl. Amer. Math. Soc., 13(2):265-346. 11. Miklavčič, M., (1998), Applied functional analysis and partial differential equations, Singapore, Word Scientific, 294 p.uk_UA
dc.identifier.issn0040-2508-
dc.identifier.urihttp://hdl.handle.net/123456789/2405-
dc.description.abstractNew basic properties of the reflection operator are analyzed for the problem of wave diffraction by abrupt discontinuities. A generalized (operator) form of the power conservation statement has been used to evaluate the norm of this operator and investigate the localization and the structure of its spectrum. The results obtained are useful for justifying matrix models of the considered class of diffraction problems, as well as for developing new methods of electrodynamic analysis of waveguiding and periodic structures.uk_UA
dc.language.isoenuk_UA
dc.publisherBegell Houseuk_UA
dc.relation.ispartofseriesTelecommunications and Radio Engineering Международный научный журнал по проблемам телекоммуникационной техники и электроники;2008 / 67(19)-
dc.titleAbrupt Discontinuities: The Reflection Operator is a Contractionuk_UA
dc.typeArticleuk_UA
Располагается в коллекциях:Кафедра комп`ютерних наук та інженерії програмного забезпечення

Файлы этого ресурса:
Файл Описание РазмерФормат 
Петрусенко стаття 13.pdfелектронне видання116,26 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.