Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://212.1.86.13:8080/xmlui/handle/123456789/2403
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPetrusenko, I.V.-
dc.contributor.authorSirenko, Yu.K.-
dc.date.accessioned2017-05-24T11:50:22Z-
dc.date.available2017-05-24T11:50:22Z-
dc.date.issued2017-05-23-
dc.identifier.citationCollin, R.E., (1992), Foundations for microwave engineering, 2nd Edition, New York, Wiley-IEEE Press, - 944 p. 2. Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A., and Sirenko, Yu.K., (1986), Resonant scattering of waves. Vol. 1: Diffractional gratings. Naukova Dumka, Kiev: 232 p. (in Russian). 3. Shestopalov, V.P., Kirilenko, A.A., and Rud’, L.A., (1986), Resonant scattering of waves. Vol. 2: Waveguide discontinuities. Naukova Dumka, Kiev: 216 p. (in Russian). 4. Petrusenko, I.V., and Sirenko, Yu.K., (2008), Abrupt discontinuities: the reflection operator is a contraction, Telecommunications and Radio Engineering, 67(19):1701- 1709. 5. Rozzi, T.E., (1972), Equivalent network for interacting thick inductive irises, IEEE Trans. Microwave Theory Tech., 20:323-330. 6. Morini, A., and Rozzi, T.E., (2001), On the definition of the generalized scattering matrix of a lossless multiport, IEEE Trans. Microwave Theory Tech., 49:160-165. 7. Uher, J., Bornemann, J., and Rosemberg, U., (1993), Waveguide components for antenna feed systems, Norwood, Artech House, - 476 p. 8. Petrusenko, I.V., and Sirenko, Yu.K., (2009), The lost “second Lorentz theorem” in the phasor domain, Telecommunications and Radio Engineering, 68(7):555-560. 9. Azizov, T.Ya., and Iohvidov, I.S., (1989), Linear operators in spaces with indefinite metric, In: Pure and Applied Mathematics, Chichester, J.Wiley&Sons, -316 p. 10. Petrusenko, I.V., (2004), Analytic – numerical analysis of waveguide bends, Electromagnetics, 24:237-254. 11. Petrusenko, I.V., (2006), Basic properties of the generalized scattering matrix of waveguide transformers, Electromagnetics, 26:601-614. 12. Richtmyer, R.D., (1978), Principles of advanced mathematical physics. Vol. 1. Springer-Verlag, New York, Heidelberg, Berlin, - 422 p. 13. Gohberg, I.Ts., and Krein, M.G., (1969), Introduction to the theory of linear nonselfadjoint operators, Providence, Amer. Math. Soc., - 448 p. (translated from the Russian). 14. Petrusenko, I.V., (2004), Matrix operator technique for analysis of wave transformers, Proc. 10th – Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET’04), Dnipropetrovs’k, pp. 118-120. 15. Petrusenko, I.V., (2006), Mode diffraction: analytical justification of matrix models and convergence problems, Proc. 11th – Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET’06), Kharkiv, pp. 332-337.uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/2403-
dc.description.abstractA complete form of the generalized power conservation law for the problem of mode diffraction in the lossless multi-port H - ( E -) plane waveguide transformer has been obtained. The generalization has been accomplished by the use of the second Lorentz lemma in addition to the theorem of complex power. Some new equivalent forms of this law have been used to establish the fundamental properties of the scattering matrices. Operator matrix forms of the energy-conservation statement in the case of abrupt discontinuity are presented. The obtained results are intended for application in the analytic-numerical methods based on the modal analysis.uk_UA
dc.language.isoenuk_UA
dc.publisherBegell Houseuk_UA
dc.relation.ispartofseriesTelecommunications and Radio Engineering Международный научный журнал по проблемам телекоммуникационной техники и электроники;2009 / 68(16)-
dc.titleGeneralization of the Power Conservation Law for Scalar Mode-Diffraction Problemsuk_UA
dc.typeArticleuk_UA
Располагается в коллекциях:Кафедра комп`ютерних наук та інженерії програмного забезпечення

Файлы этого ресурса:
Файл Описание РазмерФормат 
Петрусенко стаття 11.pdfелектронне видання436,15 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.