Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://212.1.86.13:8080/xmlui/handle/123456789/2401
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPetrusenko, I.V.-
dc.contributor.authorSirenko, Yu.K.-
dc.date.accessioned2017-05-24T11:16:23Z-
dc.date.available2017-05-24T11:16:23Z-
dc.date.issued2017-05-23-
dc.identifier.citationBorn, M. and Wolf, E., (1999), Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, Cambridge: University Press, - 985 p. Mittra, R. and Lee, S.W., (1971), Analytical techniques in the theory of guided waves, New York, The Macmillan Company, - 327 p. 3. Shestopalov, V.P. and Shcherbak, V.V., (1968), Matrix operators in diffraction problems, Izvestiya VUZ. Radiofizika, 9(2):285-295 (in Russian). 4. Petrusenko, I.V., (2004), Analytic – numerical analysis of waveguide bends, Electromagnetics, 24:237-254. 5. Petrusenko, I.V., (2006), Basic properties of the generalized scattering matrix of waveguide transformers, Electromagnetics, 26:601-614. 6. Petrusenko, I.V. and Sirenko, Yu.K., (2009), Generalization of the power conservation law for scalar mode-diffraction problems, Telecommunications and Radio Engineering, 68(16):1399-1410. 7. Petrusenko, I.V. and Sirenko, Yu.K., (2008), Abrupt discontinuities: the reflection operator is a contraction, Telecommunications and Radio Engineering, 67(19):1701-1709. 8. Shestopalov, V.P., Kirilenko, A.A., and Masalov, S.A., (1984), Convolution-type matrix equations in the theory of diffraction. Naukova Dumka, Kyiv: 296 p. (in Russian). 9. Weyl, H., (1997), The classical groups: Their invariants and representations, Chichester, Princeton University Press, - 316 p. 10. Richtmyer, R.D., (1978), Principles of advanced mathematical physics. Vol. 1, New York Heidelberg - Berlin, Springer-Verlag, - 422 p.uk_UA
dc.identifier.issn0040-2508 Print, 1943-6009 Online-
dc.identifier.urihttp://hdl.handle.net/123456789/2401-
dc.descriptionPetrusenko, I.V., and Yu.K. Sirenko, “Fresnel formulae for scattering operators”, Telecommunications and Radio Engineering, 70 (9): 749-758, 2011. (USA)uk_UA
dc.description.abstractFor the scalar problem of mode diffraction onthe abrupt waveguide discontinuity the Fresnel formulae for the reflection and transmission matrix operators are derived using the mode‐marching technique. This generalized form of the matrix model is an immediate corollary of theproposed new statement of the problem. Making use of the energy conservation law in operatorform, the correctness of the obtained Fresnel formulae for the scattering operators is proved analytically. Thus, the developed approach makes it possible to substantiate completely thewidely used mode‐matching technique for the class of diffraction problems under considerationuk_UA
dc.language.isoenuk_UA
dc.publisherBegell Houseuk_UA
dc.relation.ispartofseriesTelecommunications and Radio Engineering Международный научный журнал по проблемам телекоммуникационной техники и электроники;2011, Volume 70, Number 9-
dc.subjectmode‐matching techniqueuk_UA
dc.subjectCayley transformuk_UA
dc.subjectmode diffractionuk_UA
dc.titleFresnel formulae for scattering operatorsuk_UA
dc.typeArticleuk_UA
Располагается в коллекциях:Кафедра комп`ютерних наук та інженерії програмного забезпечення

Файлы этого ресурса:
Файл Описание РазмерФормат 
Петрусенко стаття 6.pdfелектронне видання229,82 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.