Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://212.1.86.13:8080/xmlui/handle/123456789/2399
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPetrusenko, I. V.-
dc.contributor.authorSirenko, Yu. K.-
dc.date.accessioned2017-05-24T10:21:11Z-
dc.date.available2017-05-24T10:21:11Z-
dc.date.issued2017-05-23-
dc.identifier.citationPolskiy, N.I., (1962), Projection methods in the applied mathematics, Doklady AN SSSR, 143(4):787- 790 (in Russian). 2. Gohberg, I.C. and Feldman, I.A., (1971), Convolutional equations and projection methods of their solution, Nauka, Moscow: 352 p. (in Russian). 3. Trenogin, V.A., (2002), Functional analysis, Fizmatlit, Moscow: 488 p. (in Russian). 4. Luchka, A.Y. and Luchka, T.F., (1985), Origination and development of direct methods of mathematical physics, Naukova dumka, Kiev: 240 p. (in Russian). 5. Petrusenko, I.V. and Sirenko, Yu.K., (2013), Generalized mode-matching technique in the theory of guided wave diffraction. Part 1: Fresnel formulas for scattering operators, Telecommunications and Radio Engineering. 72(5):369-384. 6. Weyl, H., (1997), The classical groups: Their invariants and representations, Chichester, Princeton University Press, - 316 p. 7. Petrusenko, I.V. and Sirenko, Yu.K., (2009), Generalization of the power conservation law for scalar mode-diffraction problems, Telecommunications and Radio Engineering, 68(16):1399-1410. 8. Petrusenko, I.V. and Sirenko, Yu.K., (2009), The lost “second Lorentz theorem” in the phasor domain, Telecommunications and Radio Engineering, 68(7):555-560.uk_UA
dc.identifier.issn0040-2508 Print, 1943-6009 Online-
dc.identifier.urihttp://hdl.handle.net/123456789/2399-
dc.descriptionPetrusenko I. V., Sirenko Yu. K., “Generalized Mode-Matching Technique in the Theory of Guided Wave Diffraction. Part 2: Convergence of Projection Approximations”, Telecommunications and Radio Engineering, 2013, v.72, No 6, pp. 461-467.uk_UA
dc.description.abstractA rigorous justification of applicability of the truncation procedure to solution of infinite matrix equation of the mode‐matching technique still remains an open question throughout the years of its intensive use. The generalized mode‐matching technique suggested for solving the problems of mode diffraction by a step‐like discontinuity in a waveguide leads to the Fresnel formulas for matrix operators of wave reflection and transmission, rather than to standard infinite systems of linear algebraic equations. The present paper is aimed at constructing projection approximations for the mentioned operator‐based Fresnel formulas and investigating analytically the qualitative characteristics of their convergence. To that end the theory of operators in the Hilbert space is used. The unconditional strong convergence of the finitedimensional approximations of the operator‐based Fresnel formulas to the true scattering operators is proved analytically. The condition number of the truncated matrix equation is estimated. The obtained results can be used for a rigorous justification of the mode‐matching technique intended for efficient analysis of microwave devices.uk_UA
dc.language.isoenuk_UA
dc.publisherBegell Houseuk_UA
dc.relation.ispartofseriesTelecommunications and Radio Engineering Международный научный журнал по проблемам телекоммуникационной техники и электроники;2013, v.72, No 6-
dc.subjectmode‐matching techniqueuk_UA
dc.subjectprojection convergenceuk_UA
dc.subjecttruncation of matrix operator, operatorbased Fresnel formulasuk_UA
dc.titleGeneralized Mode-Matching Technique in the Theory of Guided Wave Diffraction. Part 2: Convergence of Projection Approximations”uk_UA
dc.typeArticleuk_UA
Располагается в коллекциях:Кафедра комп`ютерних наук та інженерії програмного забезпечення

Файлы этого ресурса:
Файл Описание РазмерФормат 
Петрусенко стаття 4.pdfелектронне видання167,27 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.