
Telecommunications and Radio Engineering, 70(10):843-856 (2011) 

MATHEMATICAL METHODS  
IN ELECTROMAGNETIC THEORY 

PROJECTION APPROXIMATIONS TO THE 

MATRIX SCATTERING OPERATORS AND 

RELATIVE CONVERGENCE PHENOMENON

I.V. Petrusenko & Yu.K. Sirenko 

A. Usikov Institute of Radio Physics and Electronics,  

National Academy of Sciences of Ukraine 

12, Academician Proskura St., Kharkiv 61085, Ukraine 

Address all correspondence to Yu.K. Sirenko E‐mail: yks@ire.kharkov.ua  

A matrix‐operator model of the mode‐matching technique  is examined  for a scalar problem of 

mode diffraction on abrupt discontinuity in the waveguide. The convergence of approximations,

which  are  found  via  a  truncation  procedure,  to  the matrix  operators  of mode  reflection  and 

transmission is studied analytically. Various estimates for these projection approximations are 

obtained. On the basis of these results, the unconditional and relative convergence phenomena

are  analyzed.  The  impact  of  the  “Mittra  rule”  upon  the  rate  of  convergence  is  validated

analytically.  The  uniform‐convergence  condition  for  scattering  operator approximations  is 

stated.  Properties  of  the  condition  number  for  the  truncated  matrix‐operator  equation  are

discussed. The results thus obtained may well be used to substantiate a highly practically class 

of mathematical models related to the mode‐matching technique. 
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1. INTRODUCTION 

The findings of recent papers [1-3] indicate that the mode-matching technique for 
scalar problem on mode-diffraction by abrupt discontinuity in the waveguide yields 
not only the infinite systems of linear algebraic equations, as it has been earlier 
believed, but also the Fresnel formulae for matrix operators of mode reflection and 
transmission. Furthermore, the popular matrix models are found to be set up as a 
sequel of the specifically formulated mode-diffraction problem; they represent a 
reduced version of the operator-based Fresnel formulae and result in a fatal loss of 
knowledge about the properties of the sought-for solution and of the given matrix 
operator.  
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In other words, it was found that the mode-matching technique for the scalar 
mode-diffraction problems is of matrix-operator nature and an adequate mathematical 
apparatus for this technique is based on the theory of operators in the Hilbert space and 
in the Pontrjagin space [4]. 

The above reasoning and the derived operator-based form of the power 
conservation law (see [1,4]) have allowed us to justify the correctness of mathematical 
models related to the mode-matching technique for the mentioned class of mode-
diffraction problems [3], namely, to solve the problem that had remained topical far as 
long as the period of applying this technique permitted. 

In the present work we proceed with further evolving the theory of mode-matching 
technique just from this new standpoint. Herein we go into another open question 
known as the problem of validity of the truncation procedure for matrix models of the 
mode-matching technique. The pivotal feature about this problem is the relative 
convergence phenomenon [5], which is not adequately studied. 

The aim of the present work is to construct projection approximations for operator-
based Fresnel formulae and to make an analytical study into the qualitative 
characteristics of their convergence. We derive different estimates for these 
approximations, and by their convergence we imply the projection convergence (or  
P -convergence), which is of particular interest in practical computations (see the 
reference to P -convergence theory in [6,7]). 

The compositional principle of the present paper is based upon the following 
sequence of the results obtained in the course of the analytical study: (a) the basic 
theorem about the unconditional strong P -convergence of approximations; (b) the 
theorem about the function of the “Mittra rule”; (c) the condition for the uniform  

-convergence of approximations; (d) the estimates of the condition number for the 
truncated matrix equation. 
P

All the matrix operators under consideration belong to the Banach algebra  H  

of bounded operators defined on the whole Hilbert space H . Throughout the text 
 except for the proof of Lemma 1, in which the weighted spaces are utilized. 2H  

 
2. PROBLEM FORMULATION AND NOTATIONS 

The abrupt discontinuity under study is made up of the plane junction of two regular 
waveguides of the rectangular cross-section , 1,p d p 2   , which have an equal 

height d  (hereinafter without any loss of generality we set 2 1 

0

). The reference 

plane is brought into coincidence with an aperture of discontinuity  . The waveguide 
walls are assumed to be perfect electric conductors; the waveguides are filled with a 
homogeneous lossless medium and terminated in matching loads. Both of the 
waveguides are the simple partial regions in which independent field sources of the 
frequency   are positioned. The time-factor  exp i t  is omitted throughout. 
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The diffracting waveguide modes 0 , 1,mLM m    or 1, 0,mLE m    are taken as 
real-valued cross-eigenfunctions that are collected in the column-vector 

  ( )

(0)1
,p

p m m
x x




 p , and as propagation constants  ( )

(0)1
, 1,p

m m
p




 2 , such 

that  for propagating waves and  for evanescent modes. The 
nuclear self-adjoint integral operators discussed below are likewise characterized by 

the column-vector of eigenfunctions 

( )Im 0p
m  ( )Re 0p

m 

  (0)
0 1

,m m




 0x x   (see formula (22)). 

Henceforward, we shall proceed from the fact all the above eigenfunctions constitute 
the maximal orthonormal systems. Specifically, in terms of the identity operators we 
have 

 
     

   

†

†
0 0

, 0,1,2

, ; , .
p

q q

T
p p

x x x x q



   

 I I

 

   

;
          (1) 

 
The scalar (bilinear) product of functions is hereafter symbolized by parentheses and, 
when integrating over the aperture of discontinuity, the subscript 0  is omitted; the 
dagger “ ” denotes the Hermitian conjugation and the superscript “ ” is for 
transposition. 

† T

Now introduce the Hilbert spaces of sequences of complex quantities 
 

   
2 21

1 2
1 1

: , :n n n n
n n

h b n b b b
 




 

  
         
  

 b b   ,




1h

 

 
for which the inclusions of 1 2h    take place. The afore-mentioned wave 

propagation constants originate the diagonal “matrix operators of similarity” 

  1/ 21/ 2 ( ) , 1p
p m mn p

 I  

1 2 2,h   

,2

1h

, which, as it is easy to check, are bounded on the pairs 

of spaces  (here the symbol mn  is the Kronecker delta, whereas 

the cut-off points for which ( ): p
mm 0   are excluded as nonphysical ones). In 

subsequent reasoning we rely upon the following 

Lemma 1. The matrix operator  †, , , 0,1,pq p q p qV   2  is bounded in each of the 

spaces  and . 1h 2
Proof. Indeed, the matrix operators 
 

 
 

† †

† †

, ;

,

p pq pq p p

q pq pq q q

 

 

 

 

W V V

W V V
     (2) 
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are defined in each of these Hilbert spaces; they are continuous, self-adjoint and 
idempotent, i.e.,  by virtue of properties (1). Consequently, W  is an ortho-

projector and, hence, 

2W W

1W . From relations (2) then follows 1pqV . 

Corollary. The matrix operators of the form  1/ 2 † 1/ 2, , , 1,2; 0,p p k q ,p q k p   I I  q

, 1,2p q

, 

are bounded in . 2
In order to simplify the writings of subsequent mathematical manipulations we 

introduce the following special notations: 
 

 
   

( ) 1/2 1/2 ( ) ( )

( ) 1/2 1/2 ( ) 1/2 † 1/2
0 0 0 0

, ; ;

, ; ,

T
pq p p q q p pp

T
p p p p p p p p

 

   

   

   

 

 

F I I F F

F I I F I I



 

 

    ,
  , 

 
for frequently used matrix operators . 2 2 

 
3. APPROXIMATIONS TO FRESNEL FORMULAE 

The first operator-based Fresnel formula in Weyl’s notation [3] 
 

2; , : 2


 


D I
R R D

D I
  ,     (3) 

 
which is also known as the Cayley transformation (e.g. see [8,9]), is characterized by 
the following properties: 
 

(a)    ; T T  R R D D

(b)   1 Re  R D 0 ; 

(c)    , where 2 R I A   1 †: ; Re ;T    A D I A A A AA A 1. 
 
In order to find a mode reflection operator for the first partial region (1  the 
following relations  

) R

 

(1) ( )
0 0 0 12( ) ; ;T LM

LE
  

     
 

R R D D D D F       (4) 

 
need to be substituted into (3) (see [3]). 

We obtain the reflection operator for the second region by substituting 
 in relations (4). The Fresnel formula for the transmission operator 

may then be written as 
( ) ( ), 1 2   
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  0 2  T I R D AD0 .     (3a) 
 

Now introduce the orthoprojectors ( )

(0)1

K
K

K mn mp pn
p

P


 
  
 

P    and , 

where  stands for the number of waveguide modes taken into account in two 
partial regions. In what follows, when constructing finite-dimensional approximations, 
we assume the field in the region related to the sought-for reflection operator to be 
reduced to sum of 

-K KQ I P

,K M N

M  modes, whereas N  modes are allowed for in the adjacent 
region. 

We derive the matrix (i.e., the truncated M M ) Fresnel formula by two steps. In 
the initial stage we introduce an approximation for the given operator in the form of 

0 0 2:T
ND D P D 2


  . By implementing the conventional projection procedure [6,7] 

we make use of the second step to construct the final finite-dimensional M M  
approximation 

 

;M
M M

M


 


D P

R D P
D P


DP
 

 ,     (5) 

 
which is also characterized by three basic properties identical to those described above: 
 

( a )    ;  T T  R R D D   

( b )   1 Re  R D  0 ; 

( )     , where c - 2MR P A   1 †: ; Re ;T
M


1   A D P A A A AA A       . 

 

Again, an approximation for the transmission operator takes the form of . 02 NT AD P
Note that the properties of the approximations listed above are not dependent upon 

the relationship between the sizes of truncation ,M N  and the number of propagating 
modes in both of the waveguides. This fact is an immediate corollary of the continuity 
condition for the power flow through the aperture of discontinuity. This condition is 
met both for the exact and approximate solution of the problem. 

Making use of the properties (c) and ( c ) we then derive the following estimate for 
the projection approximations already constructed: 

 

 
 

  2
0

, 2 ,

T
M

T
M TT

M

           
   

P R R b bA
P D D d d b

bD AP T T b


 


 .  (6) 

 
So, a strong -convergence of the approximations in question to the scattering 
operators is completely determined by the strong 

P
P -convergence of matrix D  to the 

given operator . 


D
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Hence, the problem is to examine the conditions of convergence of the difference 
of two known operators M MN P D D  to the null operator. 

Lemma 2. Operator MN  shows a strong convergence to zero. 

Proof. Using definitions (4) and (5) we write this operator in the form of 

 
0 0 0 0

T T
MN M N M N  P D Q D P D P D QM .    (7) 

 
Our assertion follows immediately from representation (7) as an corollary of the strong 
(but non-uniform) convergence of orthoprojector  to the unit operator in : KP 2

 
lim 0, ; , .T

K
K

K M N


   2Q b b      (8) 

 
Lemma 2 and the derived estimate (6) lead to the following principal result: 
Theorem 1. Projection approximations R  and  always exhibit a strong   T
P -convergence to the corresponding scattering operators. 

In other words, for the mathematical model of the mode-matching technique given 
as the operator-based Fresnel formulae (3) and (3a) the relative (strong) P -
convergence is absent. 

The representations of operator MN  other than formula (7) can be used to make 

an in-depth study into the convergence properties of projection approximations at hand 
for a variety of essential applications. In the text below, we shall present formulae for 
the mode reflection operator only, because these relations for the transmission operator 
are similar-in-kind. 

 
4. EQUIVALENT REPRESENTATION FOR THE OPERATOR MN  

In carrying out a subsequent analysis the key role is played by distributions: 

 
     ( ) ( ) 1

0, , , ;p T
p p pG x x x x x x p   I   1,2 ,      (9) 

 
which have the meaning of traces of the Green’s function for the -th partial region 

(the upper sign “minus”) and of its second derivative (the lower sign “plus”) on the 
aperture of discontinuity. Distributions (9) induce the integral operator of the Hilbert-
Schmidt type ( ) , the hypersingular integral operator ( )  and the operators of 

difference 
( )

p

( )pG

( )qp

( )pG

( ) ( ) ( ) ( ) , , 1,2;q pB G G p q p    q  . 

These integral operators, in their turn, originate the matrix operators: 
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 
 

 

1/2 ( ) ( ) 1/2
0 0

( ) ( ) 1/2 ( ) ( ) 1/2

1/2 ( ) ( ) 1/2

, ;

, ;

,

T q
p p p p

p T
p p p p p p

qp T
p p p p

G

G

B

 

 

 

 

 

 

 





D D D I I

F F I I

B I I



 



 

 

 

T

1 2
.

p ,
2 1q

   
     

     
     

  (10) 

 
Hereinafter, when the first partial region is concerned, the choice of the upper sign 
corresponds to -modes, whereas the lower sign is for LE -modes, and vice versa 
for the second region. 

LM

If the finite number of modes is taken into account in regular waveguides, then the 
functions (9) take on the such form of expression: 

 

     ( ) ( ) 1, ,p T
K p K p K pG x x x x K M N       P I P   , , 

 
and the corresponding matrix operators are given as 
 

 
 

 

1/2 ( ) ( ) 1/2
0 0

( ) ( ) 1/2 ( ) ( ) 1/2

1/2 ( ) ( ) 1/2

, ;

, ;

, ,

T q
N p p N p

p T
p K p p p K p p

qp T
NK p p NK p p

G

G

B

 

 

 

 

 

 

 





D D P D I I

F P F I I

B I I



 



T
p




 

 

 

  
1 2

,
p

,
2 1q

     
     

     
     (11) 

 
where, by definition, ( ) ( ) ( ) ( ) ( ) ( )qp q p

NK N KB G G    . 
Using operators (10) and (11) we find the desired equivalent representation of the 

matrix operator (7) written as 
 

 MN M NK M M M M   P B B P P BQ Ξ K ,            (12) 

 
where  or K M N  and the following notation is introduced: 
 

 ( ) ( ) ( ) .MK M p K p K p M
 Ξ P F Q F P F Q   

 
As regards the found representation (12), we shall take interest in the convergence of 
difference of two known operators NK NK B B B  to the null operator. 

Lemma 3. Operator  shows a strong convergence to zero. NKB
Proof. With the properties of the strong convergence of orthoprojector (8) being 
allowed for, this assertion is immediately evident from the definition in (10) and (11) 
(or from the representation (12)). 

Further, we take a closer look of the convergence properties 
, , at the specific examples. 0NK B ,N K 
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5. FUNCTION OF THE “MITTRA RULE” 

We first consider the canonical problem on a step in a rectangular waveguide 
. For straight guides we assume  2 1    1 0,a   and  2 0,b  , where b , 

and for continuously curved waveguides we put 

a

 1 ,r r a    and , 

where  is the curvature radius of their common wall. 

 r r b2 , 
r

By extracting the main (or static) part  ( ) ( ) ,pg x x  in distribution (9), for the 

induced integral operators we obtain the representation of ( ) ( ) ( ) ( ) ( ) ( )p pG g p    , 

, where remainders of ( )1,2p  )p   and ( ) )p  are a nuclear operator and a Hilbert-
Schmidt operator, respectively. In case of the finite number of waveguide modes in 
partial regions we have degenerate-kernel integral operator ( ) ( ) ( ) ( ) ( ) ( )p p

K KG g p
K    , 

. ,K M N
By picking out the value of K M  we obtain the following representation: 
 

 MN M NM M M M M   P B B P P BQ Ξ .    (13) 

 
Now consider the difference of matrix operators in the first summand of this equality: 
 

 1/2 ( ) ( ) 1/2, qp T
NM p p NM p pB 

  B I I   ,        (14) 

 
where 
 

( ) ( ) ( ) ( ) ( ) ( )qp qp qp
NM NM NMB g        ;        (15) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

;qp q p
NM N M

qp q p
NM N M

g g g

  
    
    

  

  

1 2
, ;

2 1

p

q

     
     

     
 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ); ;p p p p p p

K K K K ,g g g K M              N  
 

Let us introduce six bounded matrix operators using the formula 
 

( ) ( ) ( ) ( )

( ) ( ) 1/ 2 ( ) ( ) 1/ 2

( ) ( ) ( ) ( )

p p

qp qp T
NM p p NM p p
qp qp

NM

g

g  


 

    
          

         

C

C I I

 

 

 
 


.      (16) 

 
Then the relation (14) can be rewritten in the form of 
 

( ) ( ) ( ) ( )qp qp
NM NM NM ΔC ΔΘ  .   

Telecommunications and Radio Engineering 



Projection Approximations to the Matrix Scattering Operators... 851 

Here the first term is the main part of the operator under study, whereas the remainder 
is the nuclear operator such that 
 

( ) ( )

,
lim 0, /qp

NM
M N

N M


 ΔΘ .   

 
Consequently, the strong convergence 0NK   will be determined by the estimate: 

 
( ) ( ) ( ) ( ) ,T qp T qp

NM NM NM  2b C b ΔΘ b b      .    (17) 

 
Next, if the first region is to be considered, then we assume N tM  (for the 

second region we put M tN ), where , and sum the kernel of the integral 
operator 

0t 
( ) ( )qp

NMg  (i.e., the kernel of the main part of operator ( ) ( )qp
NMB ) over the 

remaining index  or 1,M N   . For the straight rectangular waveguides, in which it 

is convenient to introduce dimensionless variables / , /x b x b        and the 

geometrical parameter /b a 1  , this summation procedure results in the formula 
 

        
 

     

( ) (21) ( ) (12) 1 1
, ,

1 1

( ) (1) ( ) (2) ( )

, ,

1
, , , ,

2

t M M N t N
M N xx

g g t

g g g t t

   
    

   

     

 
 

 

             

      

  

  


 (18) 

 
where the notation is as follows: 
 

 
 

 
   ( ) ( ) ( ) (1)

2

2
, ;

1
, ,

2
, ;

t

t t d
g t t g t t g

t t
b



  
 , ;   
  





       
 


     

 

  1
, co tan co tan .

2 2 2

LM
t t t t

LE

                    
       

 
The result thus obtained and definition (16) may well be employed to construct an 
operator series that will be convergent or divergent depending upon the ratio / .M N  It 
is exactly on condition t   that we are able to obtain the convergent operator series: 

 
( ) (21) ( ) (12) ( ) (1) ( ) (2)

,
1 1

2 1
2 2M M

M N
 

 


 

 

    C C C    C .      (19) 
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If, otherwise, t  , it is easy to notice that  -singularities in the sum of series (18) 
generate -unbounded matrix operator of the form: 2

 

 1 1 1/ 2 1/ 2, ,
T
p

p p pT
p

const t p





   
           

I I  1,2 . 

 
Hence, in this case, the formula (18) cannot be used to construct the convergent 
operator series in  2 . 

Thus, the rate of the first summand decrease in estimate (17) given as 
( ) ( ) 0, ,qp T

NM M N ΔC b  , is dependent upon /M N  and can be qualitatively 

evaluated as being sufficient for the series (19) to converge  t   or not  t  . 

Note that for other regular waveguides this argumentation will remain valid if the 
formula (18) holds true in terms of the result from asymptotic summation involving the 
correction of geometrical meaning of the parameter included in the formulae above. 
For instance, this will be true in the case of continuously curved rectangular 
waveguides for which (as it was ascertained in [10])    ln 1 / / ln 1 /b r a r   . 

So, the “Mittra rule” for scattering operators may be laid down as follows: 
Theorem 2. With the relation /N M  , where   is the certain geometrical parameter 
of the problem ( /b a  for straight rectangular waveguides, etc.) the rate of 
approximation convergence will be higher than with any other proportions of mode 
numbers being taken into account. 

Based upon formulae (6) and (13) we can make the inference that in this case, at 
/N M ,  the previously established strong P -convergence of projection 

approximations is characterized by the following estimate: 
 

   ,2T T
M M M M M M   P R R b B P d P BQ Ξ d  T

M

2

,     (20) 

 

where . 22 ,  d bA b 

 
6. RELATIVE UNIFORM CONVERGENCE 

Assume that the geometry of abrupt discontinuity be such that 1  . The canonical 
discontinuity of this type is the junction of the straight and uniformly curved 
waveguides of identical rectangular cross-section (i.e., the break of guide curvature). 

In terms of the properties of the integral operators under study this signifies that 
the kernel 
 

     ( ) ( ) ( ) ( ) ( ) ( ), ,qp q p ,B x x G x x G x x      .         (21) 
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is continuous with respect to both variables 0,x x  and, as a consequence, the 

induced integral operator ( ) ( )qpB  is a nuclear one. 

Let the column-vector   ( ) ( ) (0)
0 1m m

x
 


   represents a maximal orthonormal 

system of eigenfunctions of the positive operator  1/2†( ) ( ) ( ) ( ) ,qp qpB B        whereas 

 ( )
11m m




  are the corresponding nonnegative eigenvalues. An expansion similar 

to formula (9) (see, e.g., [9]) is then valid for the kernel (21): 
 

     ( ) ( ) ( ) † ( )
0 0,qpB x x x x x x

    0, ,  φ I φ .   (22) 

 
Substituting expression (22) into the third formula in Eqs. (10), we obtain a new 
representation of the matrix operator 

 

   1/2 ( ) † ( ) 1/2 ( ) ( )
0 0 0 ( ), , T

p p p p p p    
   B I φ I φ I F I    0 pF .       (23) 

 

Here the diagonal operator ( )pI   is defined by the elements  1( ) ( )
0

1

p
m m

m
c




      

and, consequently, is compact in . From (23) it then follows that operator B  is 
compact as well. 

2

When selecting the value of K N  in expression (12) we get the following 
representation: 

 
 MN M NN M M M M   P B B P P BQ Ξ N ,    (24) 

 
where, according to (11), the matrix operator  is originated by the difference of 
two degenerate-kernel integral operators. Based upon the general formula (12) for the 
operator difference under consideration we arrive at the following expression: 

NNB

 

 MN M NN M M M M    P B B P P BQ P QN . 

 
In view of Eq. (6) the following estimates are obtained: 
 

, 0, ;

1 ,

MN NN M M N

MN M NN M M M M N

M N

1, ,M N

   

    

B BQ P Q

P B P P BQ P Q

 

 
 (25) 

 
where 
 

M NN M M M NN M  P B P P BQ B BQ  . 
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For individual terms in these inequalities we have (e.g., see [9,11]) 
 

lim 0, lim 0NN M
N M 

 B BQ . 

 
Thus, we have the proof of 
Theorem 3. For the case where 1 2   the (relative) uniform P -convergence 

0, ,M M N  P R R , is observed on condition that M N . 

The numerical results illustrating the theorem are given in [1]. 

 
7. PROPERTIES OF THE CONDITION NUMBER 

The computational stability required for practical purposes as well as the accuracy of 
numerical realization of an approximate solution is determined by the quantity 

 cond   -1A A A   . It is easy to see that this condition number is bounded at any 

values of M  and N . Indeed,   
, 1M N

cond




A 

0D

, because in view of the properties 

 and boundedness of the matrix operators  we have  c
 

  0 01 ,Tcond M N      -1A A D D  , .  

 
This general estimator may be updated when imposing auxiliary conditions. To 

this end we will introduce the quantity  M Mcond  A P A A P-1
M , whose 

properties  
 

 1 1Mcond   A A D-1     

 
make it possible to state 

Theorem 4. With the proviso that MN  A
-1

, the double-ended estimate 
 

     1 1

2 21 1
Mcond cond

cond M 
 

 
A A

A
 

 
,         (26) 

 

is valid for 1 2,M M M   P A DP D A P D D  . 

Proof. The triangle inequality enables to find the estimates: 
 

11 1
1 2, ,M M M     A P A P A P A A A    
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from which the formula (26) immediately follows under the condition that 2 1 . 

Corollary. In case of the (relative) uniform convergence, i.e., 0MN  , , 

s 0

,M N 

the number M  and 0N  a  presen  such that re t,
 

 
 

1 MN
M

cond

cond
 

A

A


  

 
for 0M M  and . 0N N

The results from the numerical investigations into the behavior of the condition 
number in case of the uniform convergence are cited in [1]. 

 
8. CONCLUSIONS 

The applicability of the truncation procedure to matrix models of the mode-matching 
technique has been substantiated rigorously for the problem on mode diffraction by an 
abrupt discontinuity in a rectangular waveguide. Making use of the projection 
procedure, the finite-dimensional approximations to the operator-based Fresnel 
formulae have been constructed and a study has been performed of the qualitative 
characteristics of their convergence. Based upon the fundamental properties of Cayley 
transform the problem of estimating of the found approximations has been reduced to 
investigating the projection convergence ( -convergence) of the finite matrices to a 
given matrix operator. 

P

It has been proved that for the mathematical model of the mode-matching 
technique, which is represented as the operator-based Fresnel formulae, the obtained 
projection approximations are unconditionally and strongly P -convergent to a true 
solution. In other words, for the matrix model under consideration the phenomenon of 
relative strong convergence is absent. 

It has been found that for the canonical problem on a step in a rectangular 
waveguide the observance of the “Mittra rule” for the reduced field expansions 
signifies the fastest strong convergence of the matrix operator NM  to zero; this 
operator is generated by the difference of the Green’s function traces on the aperture 
and it determines a part of approximation error in accordance with the estimate (20). 

For the canonical problem on the jump (or break) of the rectangular waveguide 
curvature, the relative uniform P -convergence of projection approximations takes 
place in accordance with formula (25). The condition for this convergence states that 
the number of modes being allowed for should smaller just for the waveguide port for 
which the reflection operator is being sought. 

Finally, we have derived the estimates for the condition number of the truncated 
matrix equation, which ensure the stability of practical computations. 
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The developed approach and the results thus achieved allow one to rigorously 
justify the truncation procedure in the numerical realization of the matrix-operator 
models of the mode-matching technique in solving the problems of mode diffraction 
on abrupt discontinuity in the waveguide. 
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